
Contribution Maximization in Probabilistic Datalog

Tova Milo
Tel Aviv University

Tel Aviv, Israel
milo@post.tau.ac.il

Yuval Moskovitch
Tel Aviv University

Tel Aviv, Israel
moskovitch1@post.tau.ac.il

Brit Youngmann
Tel Aviv University

Tel Aviv, Israel
brity@mail.tau.ac.il

Abstract—The use of probabilistic datalog programs has
been recently advocated for applications that involve recursive
computation and uncertainty. While using such programs allows
for a flexible knowledge derivation, it makes the analysis of query
results a challenging task. Particularly, given a set O of output
tuples and a number k, one would like to understand which k-size
subset of the input tuples have contributed the most to the deriva-
tion of O. This is useful for multiple tasks, such as identifying the
critical sources of errors and understanding surprising results.
Previous works have mainly focused on the quantification of
tuples contribution to a query result in non-recursive SQL queries,
very often disregarding probabilistic inference. To quantify the
contribution in probabilistic datalog programs, one must account
for the recursive relations between input and output data, and
the uncertainty. To this end, we formalize the Contribution
Maximization (CM) problem. We then reduce CM to the well-
studied Influence Maximization (IM) problem, showing that we
can harness techniques developed for IM to our setting. However,
we show that such naı̈ve adoption results in poor performance.
To overcome this, we propose an optimized algorithm which
injects a refined variant of the classic Magic Sets technique,
integrated with a sampling method, into IM algorithms, achieving
a significant saving of space and execution time. Our experiments
demonstrate the effectiveness of our algorithm, even where the
naı̈ve approach is infeasible.

I. Introduction

Real-life applications often rely on an underlying database
in their operation. While many of these applications employ
conventional SQL as their query language, the use of prob-
abilistic datalog has been recently advocated for applications
that involve recursive computation and uncertainty [1], [2], [3],
[4]. To illustrate, consider AMIE [2], an information extraction
system that mines logical rules from Knowledge Bases (e.g.,
YAGO [5]), based on correlations in the data. The mined rules
are then treated as a datalog program, which may be evaluated
w.r.t. the knowledge base, e.g., to address data incompleteness
and derive new facts. Since the program rules are automatically
mined, there is an inherent uncertainty w.r.t. their validity.
AMIE thus associates corresponding probabilities to the rules,
yielding a probabilistic datalog program.

The use of probabilistic datalog allows for a flexible
and expressive knowledge derivation, yet introduces intricate
relationships between the data items. This makes the analysis
of a query results a challenging task. In particular, given a
set O of output tuples, one would like to understand which
(bounded size) subset of the input tuples have contributed
the most to the derivation of O. This is useful for multiple
tasks, such as identifying the critical sources of errors and
understanding surprising results [6], [7]. Acquiring information
about the most influential tuples may also serve users in ob-
taining detailed explanations for output tuples using selective

exports
Country Product
France wine
France vinegar
France oil
Cuba tobacco
Cuba sugar
Cuba nickel
Russia gas

imports
Country Product
Germany wine
USA vinegar
Pakistan oil
India tobacco
Denmark sugar
Iran nickel
Ukraine gas

dealsWith (edb copy)
Country Country
France Cuba

TABLE I: Example Database.
provenance tracking systems (e.g., [3]). These systems provide
explanations based on user-defined patterns, however, defining
the patterns may be challenging without prior knowledge on
the tuples that have contributed the most to the results.

To illustrate the problem that we study in this paper
consider the following example.

Example 1.1: We consider a small probabilistic datalog
program consisting of 3 rules, mind by AMIE over YAGO1. A
sample database instance is depicted in Table I. This program
outputs a binary relation dealsWith, including information on
international trade relationships.
r1(0.8) dealsWith(a, b):- dealsWith(b, a)
r2(0.7) dealsWith(a, b):- exports(a, c),imports(b, c)
r3(0.5) dealsWith(a, b):- dealsWith(a, f), dealsWith(f, b)

Focusing on a set of derived trade relations of interest (e.g.,
dealsWith(USA, Iran), dealsWith(Pakistan, India)
dealsWith(Russia, Ukraine)), one may wish to under-
stand which database facts have led to this inference. Pre-
senting all tuples that took part in the computation as an
explanation may be cumbersome and not informative. For
instance, nearly 36% of the database tuples are used to derive
solely the fact that USA trades with Iran. Thus, it is of great
importance to be able to focus on a small set of facts that have
contributed the most to this inference.

To facilitate such an analysis, one needs first to formally
quantify the notion of contribution, while considering the
following three issues: First, as opposed to the simple SQL
setting, the recursive relationship between input and output
data, and the uncertainty induced by the rules’ probabilities
are need to be taken into account. For instance, in the above
recursive program, the rules’ probabilities (in parenthesis)
model the fact that transitive trade relations are considered less
trustworthy (likely to happen) than direct relations. Second,
note that selecting the top k tuples with the highest individual
contribution is not the same as finding a k-size set with
highest contribution, as two input tuples may contribute to
exactly the same derived facts. Therefore, one must consider
the joint contribution of a set of input tuples to a set of output

1This program is a strict subset of the actual set of rules generated by AMIE

tuples. As we demonstrate, our definition, which considers
such joint contribution of sets of tuples, ensures a greater
coverage of the output tuples of interest. Last, the rules’
probabilities are independent, and so are the instantiations of
each rule. Thus, the independence of the choice to fire a rule
instantiation or not, from other rule firing choices, needs to be
considered. For instance, among many other tuples, the tuple
t1 = dealsWith(France, Cuba) takes part in the derivation
of t2 = dealsWith(USA, Iran). To properly asses its own
contribution to t2, we focus in our definition on the marginal
contribution of t1 (or more generally, of a k-size set of tuples),
regardless of other parts in the derivation.

While the quantification of tuples contribution to a query
results have been studied in the literature (e.g., [8], [6], [7],
[9]), previous works have mainly focused on non-recursive
SQL queries, very often disregarding probabilistic inference.
Furthermore, a key difference is that we aim to quantify
the marginal contribution of input tuple(s) to output tuple(s),
independently of other derivations in the program, whereas
previous works have focused on quantifying the contribution
of a single database tuple to a single output tuple, focusing on
dependencies. See further details in the Related Work Section.

Interestingly, an analogous problem of selecting influential
k-size items set was studied in the context of social networks
analysis. Particularly, the classic Influence Maximization (IM)
problem [10] is the problem of finding a k-size set of users in
a social network (called a seed-set), so that their aggregated
influence (which may propagate transitively in the network)
on other users is maximized. Reducing our problem to this
well-studied problem allows to harness techniques for IM to
our setting. However, as we show, there are several challenges
that need to be overcome to facilitate an efficient execution.

We next outline our main contributions.

Problem formulation: It is common to describe the
process of (probabilistic) datalog evaluation through the notion
of derivation trees. A derivation tree of a tuple t specifies the
rule instantiations and intermediate facts jointly used in the
gradual process of deriving t. However, multiple derivation
trees of the same or different tuples may share common parts.
To simultaneously capture all trees, we merge them into a
single Weighted Derivation (WD) graph, where edge weights
record the corresponding derivation probabilities. This graph
essentially captures the provenance of the derived tuples [11],
[3], [12]. Intuitively, to quantify the contribution of the deriva-
tions involving a set of databases tuples T to a set of output
tuples O, independently of other derivations in the graph, we
consider a random draw of fire-or-not for all rules derivations
(edges) in the WD graph. We measure the contribution as the
expected number of output tuples from O reachable from the
tuples in T in such a randomly generated subgraph. As we
explain in Section III-B, this captures the desired properties
expected from a contribution function as described above. We
then define the Contribution Maximization (CM) problem as
the problem of finding, among a set of database tuples of
interest T , a k-size subset with the highest contribution to the
target set of output tuples O (see Section III).

Algorithms: A naı̈ve approach. We show that our
contribution function matches nicely the influence function
from the classic Influence Maximization (IM) problem [10].

Indeed, CM can be formulated as a variant of IM, and therefore
top performing IM algorithms can be adjusted to solve our
problem. A naı̈ve solution for the CM problem is to first
fully materialize the WD graph, then to run an (adjusted)
IM algorithm over it, finding a k-size set of tuples with the
maximal contribution. However, while this naı̈ve algorithm
provides, in expectation, the optimal approximation for the CM
problem, the WD graph may be prohibitively large, and thus
this approach is impractical.

An optimized algorithm. We, therefore, devise an op-
timized algorithm that avoids the materialization of the full
WD graph (while maintaining the same optimal approximation
factor), and allows for a significant saving in both memory and
running time. Specifically, this algorithm takes as an input an
IM algorithm and employs two optimizations. The first har-
nesses principles from the classical Magic-Sets transformation
[13], to construct only the graph parts that are essential for
the computation of the (adjusted) IM algorithm. Intuitively, we
rewrite the input program so that we can materialize, on-the-
fly, only a small subgraph of the WD graph that is required for
the computation. The key challenge is to assign probabilities
to the rules of the transformed program s.t. its corresponding
WD graph is essentially isomorphic to the desired subgraph of
the original WD graph. We further refine the above process,
allowing for additional space and runtime saving: We bundle
the Magic-Sets graph construction with the sampling process
employed by the IM algorithm, to further reduce the size of the
materialized subgraphs. The key challenge here is to inject the
IM sampling into the Magic-Sets graph construction, yielding
a subgraph that is still essentially isomorphic to the relevant
portion of the original WD graph (see Section IV).

Experimental study: We complement our algorithmic
development with an experimental study that evaluates the
runtime performance and memory consumption of our algo-
rithm. We experimentally compare the algorithm performance
in multiple real-life scenarios, highlighting the savings and
trade-offs achieved by each proposed optimization. Our ex-
perimental results indicate the effectiveness of our algorithm,
even where the naı̈ve algorithm is infeasible. We conclude
with a case study, demonstrating both the quality results of our
contribution measure, as well as the quality of approximation
of the proposed algorithms (see Section V).

Related work is presented in Section VI and we conclude
in Section VII. For space constraints, all proofs are deferred
to our technical report [14].

II. Preliminaries

A. Probabilistic Datalog

We assume that the reader is familiar with standard (proba-
bilistic) datalog concepts [13]. Here we review the terminology
and illustrate it using Example 1.1 from the Introduction,
which will serve as our running example throughout the paper.

Datalog programs: A datalog program is a finite set
of datalog rules. A datalog rule is an expression of the form
R1(u1) :- R2(u2), . . . ,Rn(un) where Ri’s are relation names, and
u1, ...,un are sets of variables with appropriate arities. R1(u1)
is called the rule’s head, and R2(u2), . . . ,Rn(un) is the rule’s
body. Every variable occurring in u1 must occur in at least one
of u2, . . . ,un. We distinguish between extensional (edb) and

intentional (idb) database relations. The former are the input
database relations while the latter are derived by the program
and appear in the rule heads. We use interchangeably the words
fact and tuple for the edb/idb relations. A datalog program is
then a mapping from edb instances to idb instances, whose
semantics may be defined via the notion of the consequence
operator. First, the immediate consequence operator induced
by a program P maps a database instance D to an instance
D

⋃
{A} if there exists an instantiation of some rule in P (i.e.,

a consistent replacement of variables occurring in the rule with
constants) s.t. the body of the instantiated rule includes only
atoms in D and the head of the instantiated rule is A. Then
the consequence operator is defined as the transitive closure
of the immediate consequence operator, i.e. the fixpoint of the
repeated application of the immediate consequence operator.
Given a database D and a program P we use P(D) to denote
the restriction to idb relations obtained by applying to D the
consequence operator induced by P. We use r(inst) to denote
an instantiation of a rule r.

It is common to describe the process of datalog evaluation
through the notion of derivation trees. A derivation tree of
a tuple t w.r.t. a datalog program P and a database D is a
finite tree whose root is labeled by t, the leaves are labeled by
edbs, and the internal nodes by idb facts. The tree structure is
dictated by the consequence operator of the program: the labels
set of the children of a node n corresponds to an instantiation of
the body of some rule r, s.t. the label of n is the corresponding
instantiation of r’s head. To make clear which instantiated rule
is used, we use a refined variant of the traditional derivation
tree, where we add an auxiliary node labeled r(inst) between
each derived idb tuple and the tuples in the rule’s body.

Example 2.1: Consider the datalog program depicted in
Example 1.1 (ignore, for now, the numbers in parenthesis),
which outputs the binary relation dealsWith (an edb ”copy”
of this relation appears as well, with rules for copying its
content that are omitted for brevity). To illustrate the derivation
process, consider again the database shown in Table I. Two
possible derivations of idb facts, in a form of derivation trees,
are depicted in the gray and blue areas in Figure 1. The idb
tuples are colored in red, the edb tuples are colored in yellow,
and the auxiliary rule instantiations nodes are colored in purple
(also ignore, for now, the edge weights).

Probabilistic Datalog program: To model scenarios
with uncertainty, it is common to associate probabilities to
edb tuples and program rules, capturing the confidence in the
correctness of the tuples/rules [2], [15]. Since probabilities
on edb tuples can be modeled by probabilistic rules2, for
simplicity, we consider here only rules probabilities.

Let (P,w) denote a probabilistic datalog program, where P
is the set of rules and w is the probabilities function associating
each rule r with a probability w(r). We assume that the
interpretation of the probability associated with a rule is that a
rule instantiation is trusted with probability of w(r). Note that
this interpretation matches the definition of rules confidence
values introduced in [2], where the rules weights are based on
the correlations in the database.

2E.g., by simply making each edb fact a rule (that copies the original
fact into an auxiliary replica relation to be used by the program), with the
corresponding probability.

The semantics of a probabilistic datalog program. In
the execution of a probabilistic datalog program, each rule
instantiation is drawn to fire in a probability that corresponds
to the rule’s probability w(r). That is, the derivation process in
a probabilistic datalog program is the same as the derivation
process in a regular datalog program, except that for each rule
instantiation that has not been considered yet, we draw if it
should be fired or not according to the rule’s probability. Only
instantiations for which the result of the draw was positive
are fired. That is, the semantics of a probabilistic datalog
program is also defined via the notion of the consequence
operator, while each rule r instantiation occur with probability
of w(r). The process halts where no new facts were derived.
Note that here there is no single fixpoint, as each run of
the probabilistic program may derive a different set of facts.
Therefore, the semantics of probabilistic datalog programs
assigns a probability to each idb fact in P(D), capturing its
likelihood to be derived in a random program execution.

The derivation trees have the same shape as before, except
that we now also annotate the outgoing edges of the rule-
instantiation nodes with their firing probability. In what follows
we will overload the notation P(D) to denote also all the idb
facts that can be derived by some probabilistic execution of the
program. Note that P(D) includes the same set of facts derived
in the regular (non probabilistic) execution of the program.

Example 2.2: Consider again the probabilistic program
presented in Example 1.1. Each rule mind by AMIE is as-
sociated with a probability, capturing the fact that the rules’
validity is questionable. The rule weights are represented in the
derivation trees by corresponding edge weights, as depicted in
Figure 1. Observe that a random execution of the program
will generate the fact dealsWith(Pakistan,India) (resp.
dealsWith(USA,Iran)), if all rules instantiation in the blue
(resp. gray) area (i.e., derivation tree) were drawn to fire.

B. Influence Maximization

As mentioned, we will employ concepts from Influence
Maximization (IM) for our Contribution Maximization (CM)
problem. Here we review the classic IM problem and its state-
of-the-art algorithm scheme.

Let G = (V, E,W) be a weighted directed graph, where
V is the set of nodes and each edge (u, v) ∈ E is associated
with a weight 0 ≤ W(u, v) ≤ 1, which models the probability
that a node u will influence its neighbor v. Given a function
I(·) dictating how influence is propagated in the graph and a
number k ≤ |V |, the goal is to find a k-size node set with
maximal expected influence. Formally,

Definition 2.3 (IM [10]): Given a graph G and a num-
ber k ≤ |V |, let OPTk denote the maximum expected in-
fluence spread of any k-size node set S , i.e. OPTk =
maxS⊆V,|S |=kE[I(S)]. The IM problem finds an optimal k-size
seed set S s.t E[I(S)] = OPTk.

The function I(·) is defined by the influence propagation
model. The majority of existing IM algorithms apply for the
two most researched Information Cascade (IC) model [10],
[16]. In the IC model the propagation is carried out in discrete
steps, s.t. each node influenced in the preceding step attempts
to influence its uninfluenced neighbors, with an independent
probability indicated by the edge weights.

Subgraphs generation. The propagation process under the
IC model is modeled using sampled subgraphs, which are used
to estimate the influence of a seed-set, and are constructed as
follows. Independently, for each edge (u, v) with the weight
W(u, v) we flip a coin indicating whether this edge is active
or not. The edges in G for which the coin flip indicated
an activation will be successful are declared to be live; the
remaining edges are declared to be blocked. If we fix the
outcomes of the coin flips and then initially activate a seed-set
S , a node v ∈ V ends up influenced if there is a path from
some node in S to v consisting entirely of live edges.

The IM problem is hard to approximate beyond a factor
of (1 − 1

e) [10]. In the sequel, whenever we refer to an IM
algorithm, we in fact refer to a probabilistic algorithm, which,
given the input parameters 0 ≤ ε, δ ≤ 1, achieves, with
probability ≥ (1 − δ), the optimal approximation factor up to
an additive error of ε. To ease the presentation, we omit the
discussion of ε and δ whenever possible.

The RIS framework: State-of-the-art IM algorithms
are based on the Reverse Influence Sampling (RIS) frame-
work [16], which reduces the problem to the classic Maxi-
mum Coverage (MC) problem [17]. Formally, given a graph
G = (V, E,W), RIS captures the influence of a given seed-
set by generating a set of random Reverse Reachable (RR)
sets, where each RR set is a subset of V and constructed as
follows. Given G, a random RR set is generated from G by (1)
selecting a random node v ∈ V (2) generating a sample graph g
from G (as described above) and (3) returning the set of nodes
that can reach v in g. The RIS framework consists of two
phases: First, nodes are sampled independently and uniformly,
then, for each sampled node u, we construct its RR set. Next,
each node is associated with a set whose members are the RR
sets containing it, then, using the greedy algorithm for MC
[17], k nodes are selected. Top performing IM algorithms are
based on this scheme, with [18] achieving nearly optimal time
complexity of Θ̃(k · (|V | + |E|)). The main difference between
existing RIS IM algorithms is the number of generated RR sets
θ. Generally, these algorithms dynamically decide how many
RR sets to generate during their run, where the number of sets
is a function of the graph size, the required error rate (ε) and
the success probability (δ) [19], [20].

III. Problem Definition

A. The Weighted Derivation (WD) Graph

Given a probabilistic datalog program, consider all its
possible executions, and recall that in each such execution
every instantiation of a rule r(inst) is drawn to fire in a
probability that corresponds to the rule’s probability w(r). We
next devise a directed weighted graph that captures all these
possible executions, referred to as the Weighted Derivation
(WD) graph. Intuitively, this graph integrates all derivation
trees of the program, merging their common parts.

Definition 3.1: Let (P,w) be a probabilistic datalog pro-
gram and D be a database instance. The WD graph of (P,w)
and D is a directed weighted graph G = (V, E,W) where:

Nodes V consists of a distinct node per each edb in D, each
idb in P(D), and each rule instantiation r(inst).

Edges E is a set of edges where for every rule instantiation
r(inst) = h:-b1, . . . , bn, the node r(inst) has n incoming

ex(FR,vinegar) im(USA,vinegar)

1 1

r2(ex(FR,vinegar),im(USA,vinegar)

0.7

dw(USA,FR)

dw(FR,CU)

ex(CU,nickel) im(IR,nickel)

11

r2(ex(CU,nickel),im(IR,nickel)

0.7

dw(CU,IR)

1

1

r3(dw(FR,CU), dw(CU,IR))

0.5

dw(FR,IR)

1 1

r3(dw(USA,FR), dw(FR,IR))

0.5

dw(USA,IR)

ex(CU,tobacco) im(IN,tobacco)

1 1

r2(ex(CU,tobacco),im(IN,tobacco)

0.7

dw(CU,IN) ex(FR,oil) im(PK,oil)

1 1

r2(ex(FR,oil),im(PK,oil)

0.7

dw(PK,FR)

1

1

r3(dw(FR,CU),dw(CU,IN))

0.5

dw(FR,IN)

1 1

r3(dw(PK,FR), dw(FR,IN))

0.5

dw(PK,IN)

1 r1(dw(USA,IR))

0.8

dw(IR,USA)

1

r1(dw(IR,USA))

0.8

1r1(dw(PK,IN))

0.8

dw(IN,PK)

1

r1(dw(IN,PK))

0.8

Fig. 1: A partial WD graph

edges (bi, r(inst)), i = 1 . . . n, from the edb/idb facts in its
body, as well as one outgoing edge (r(inst), h) to the idb
fact h in its head.

Weights W is a weight function assigning weights to the
graph edges s.t. each edge (r(inst), h) outgoing a rule
instantiation is assigned with the rule’s weight w(r), and
all other edges have a weight of 1.

Example 3.2: Consider again the probabilistic datalog pro-
gram given in Example 1.1, and the database instance shown
in Table I. Figure 1 depicts a partial WD graph. Observe that
the two derivation trees had been merged into a single graph.

We can show that the size of the WD graph is polynomial
in the database size (see [14] for proof).

Proposition 3.3: The size of the WD graph of a database
D and probabilistic datalog program (P,w) is polynomial in D
(with the exponent depending on the size of P).

However, in our experimental study we demonstrate an empir-
ical evidence for its practical blowup (see Section V). Thus,
one of our goals is to avoid fully constructing the WD graph.

B. Problem Formulation

As discussed in the Introduction, to properly quantify the
notion of contribution, one must consider: (1) The recursive
relationship between input and output data, and the uncertainty
induced by the rules’ probabilities; (2) The joint contribution
of a set of input tuples to a set of output tuples; (3) the
independence of the choice to fire a rule instantiation or not,
from other rule firing choices.

Intuitively, a tuple t1 ∈ D contributes to the derivation of a
tuple t2 ∈ P(D) if t1 is a part of (at least) one of the derivation
trees of t2. In other words, the WD graph contains some
directed path(s) from t1 to t2. The probabilities of the rules in-
stantiations along the path(s) capture the potential involvement
of t1 in this derivation. Analogously, when considering a set T1
of input tuples and a set T2 of output tuples, the weights along
the paths in the WD graph from nodes in T1 to nodes in T2,
capture the involvement of the former tuples in the derivation
of the latter. To quantify the joint contribution of tuples in T1

independently of other facts that participated in the derivations,
we consider a subgraph generated from the WD graph by
drawing all edges, independently at random, with probability
corresponding to their respective weights (as described in
Section II-B). Note that such a random subgraph represents a
random execution of the probabilistic program, independently
flipping a coin to decide if each rule instantiation was fired or
not. We measure the contribution of T1 to T2 as the expected
number of nodes in T2 reachable for nodes in T1 in a randomly
generated such subgraph.

Definition 3.4 (Tuple Sets Contribution): Given the WD
graph G of a database D and a probabilistic program (P,w),
let g be a random subgraph generated from G. We define the
contribution of a set T1 ⊆ D to a set T2 ⊆ P(D), denoted
c(T1 T2), as the expected number of nodes in T2 reachable
from nodes in T1 in the subgraph g.

Observe that this definition captures the desired properties.
The recursive relations and the uncertainty are captured via the
WD graph. The more paths from T1 to T2 that the WD graph
contains and the higher the probabilities of rules they include,
the greater is the contribution of T1 to T2. We capture the joint
contribution of tuples in T1 to tuples in T2 by considering the
expected number of nodes in T2 reachable from nodes in T1,
in a random subgraph g, i.e., a random program execution. To
account for the independence of the rules’ probabilities and
rules instantiations, we measure the involvement of tuples in
T1 in the derivation of tuples in T2, independently of other parts
of the derivations, thereby, capturing the marginal contribution
of T1 to T2. We further demonstrate the quality of our measure
to capture tuples contribution via a case study in Section V-C.

Example 3.5: Continuing with our example, let T1 =
{dealsWith(France,Cube), exports(France,vineger)},
and T2 = {dealsWith(USA,Iran),
delasWith(Pakistan, India)}. As can be seen in
Figure 1, the tuple dealsWith(France,Cuba) contributes
to both tuples in T2, as it is a part of the derivations of both
idbs. In contrast, the tuple exports(France, vineger) is a
part of the derivation of only dealsWith(USA, Iran).
Indeed, the contribution scores of the each tuple
{dealsWith(France,Cube), exports(France,vineger)}
to T2 are ≈ 0.5 and 0.35, resp. Note that to assess the
marginal contribution of exports(France, vineger) to
dealsWith(USA, Iran), we consider only paths connecting
these tuples, ignoring other parts of the derivation (e.g., we
ignore the part corresponding to dealsWith(France,Cuba)).
Finally, the contribution score of T1 to T2 is ≈ 0.6. This score
is lower than the sum of the separated contribution scores
because of the shared sub-paths.

C. The Contribution Maximization (CM) problem

We are now ready to define the CM problem. We conclude
with a complexity analysis of our problem.

Definition 3.6 (CM): Given a probabilistic program (P,w),
a database D, a set T1 ⊆ D, a set T2 ⊆ P(D), and a natural
number k ≤ |D|, let OPTk denote the maximum expected
contribution of any k-size set to the set T2, i.e. OPTk =
maxS⊆T1,|S |=kE[c(S T2)], where E[c(S T2)] is the
expected contribution of S to T2. The CM problem is to find an
optimal k-size set S ′ ⊆ T1 such that E[c(S ′ T2)] = OPTk.

Example 3.7: The derived facts in Ex-
ample 1.1 include some surprising results:
t1 ={dealsWith(USA,Iran),t2 =delasWith(Pakistan, India),
and t3 = delasWith(Russia, Ukraine)}. Over 73% of
the database tuples are taking part in the derivation of these
facts. To find a small set of edbs contributing the most
to the derivation of these facts, one may set T1 = D, and
T2 = {t1, t2, t3}. For brevity, let k = 2. Observe that each
edb except of t=dealsWith(France,Cuba) contributes to
the derivation of a single idb, while t is involved in the
derivation of both t1 and t2. Intuitively, a 2-size set with the
highest contribution to T2 should contain at least one edb that
contributes to each idb in T2. Indeed, a set containing t and
one tuple contributing to t3 (e.g., exports(Russia, gas))
yields the maximal contribution score. In contrast, selecting
the top-2 edbs with the highest individual contribution scores
may results in selecting t and any other tuple that also
contributes to either t1 or t2 (e.g., exports(France, oil)),
hence with overall smaller joint contribution.

At this point we note that our problem can be seen as a
special case of the classic IM problem. Indeed, as we explain
in Section IV-A, our contribution function matches nicely the
influence function with IC as the propagation model. Our
problem can thus be formulated as a variant of IM with the
following restrictions: (i) the selected seed nodes must belong
to the set T1, and (ii) the only target nodes that we count are
those belong to T2. Therefore, as we explain in Section IV-A,
existing IM algorithms can be adjusted to solve our problem.
A naı̈ve approach would be to first build the WD graph, then
to run the adjusted IM algorithm over it, finding a k-size set
of tuples with the highest contribution. However, as we shall
see, such a naı̈ve approach is highly inefficient.

Complexity Analysis: We show that it is NP-hard to
determine the optimum for CM, and the optimum value is hard
to approximate beyond a constant factor, even if the program
contains a single rule. As in IM, we prove so by reducing from
the classic Set Cover problem. Nonetheless, the key difference
is that the complexity of IM is measured in terms of the graph
size (which is given as part of the input), whereas in our case
the complexity is measured in terms of the input database size
(and the graph is not provided). The proof is available in [14].

Theorem 3.8: It is NP-hard in the database size to de-
termine the optimum for CM, and the optimum is hard to
approximate beyond a factor of (1 − 1

e).

IV. Algorithms

We next describe the naı̈ve algorithm, called Naı̈veCM,
then present our optimized algorithm, named MagicS CM.

A. The Naı̈veCM Algorithm

We begin by providing a naı̈ve procedure for constructing
the WD graph, then explain the required adjustments for an
RIS-based IM algorithm to solve CM.

Algorithm 1 depicts a naı̈ve procedure for incrementally
building the WD graph. Similarly to the semi-naı̈ve algorithm
for datalog evaluation [13], it builds the graph by iteratively
applying the rules of a given program (P,w) on the facts de-
rived on the previous iteration. Specifically, first the algorithm
initializes the node set with all edb facts t ∈ D (lines 1–2).

Algorithm 1: Building the WD graph.
input : A probabilistic datalog program (P,w) and a

database D.
output: The WD graph G of (P,w) and D.

1 foreach edb tuple t ∈ D do
2 Add a new node t to V

3 while G = (V, E,W) changes do
4 foreach rule r ∈ P do
5 foreach instantiation h:-b0, . . . , bn of r s.t.

∀0 ≤ i ≤ n bi ∈ V do
6 if h < V then
7 V ← V ∪ {h}

8 if @r(inst)-node v ∈ V s.t
∀0 ≤ i ≤ n(bi, v) ∈ E and (v, h) ∈ E then

9 Add an r(inst)-node v to V
10 E ← E ∪ {(bi, v) | 0 ≤ i ≤ n} ∪ {v, h}
11 ∀i ∈ [0, n] : W(bi, v) = 1, W(v, h) = w(r)

12 return G = (V, E,W)

Then, while new facts and derivations are discovered (line 3),
for every rule r ∈ P, and every instantiation h:-b0, . . . , bn of r
such that all the body atoms are in V (lines 4–5), the algorithm
adds h to V if h is a new idb (lines 6–7), and otherwise uses
the existing node. Then it adds the corresponding r(inst)-node
and edges (lines 8–10) to E, if not there already. The incoming
edges of the r(inst)-node are set to be of weight 1, and its
outgoing edge’s weight is equal to the weight of the rule w(r)
(line 11). The algorithm terminates when no new nodes or
edges are added.It is easy to show that Algorithm 1 always
halts and computes the WD graph correctly. As it follows
similar lines as the semi-naive algorithm for datalog evaluation
[13], its (polynomial) time complexity analysis is omitted.

To employ an existing IM algorithm over the WD graph,
we need to adjust it to comply to the following restrictions:
(i) all selected seed nodes belong to T1, and (ii) instead of
maximizing the contribution to all nodes, we maximize the
contribution to only nodes in T2. Given an IM algorithm A,
a set T1 ⊆ D, and a set T2 ⊆ P(D), we define AT1

T2
as its

analogous algorithm that chooses only seed nodes from T1
and maximizes the contribution only to T2. Any such algorithm
A can be adapted to AT1

T2
via two modification. First, instead

of including all nodes that are reachable from the sampled
starting node in its corresponding RR set, the RR set contains
only reachable nodes from T1. Second, following a previous
work on targeted IM [21] (where the goal is to maximize
influence over a targeted group of users), the RR sets are
generated from nodes in T2. We can prove that AT1

T2
outputs

a seed set contributing to at least (1 − 1
e)-fraction from the

optimal solution (which is optimal [10]), while maintaining
the same computational complexity as A (see [14]).

The complete Naı̈veCM (shown in Algorithm 2) operates as
follows. Given a program (P,w), a database D, a set T1 ⊆ D,
a set T2 ⊆ P(D), and a number k ≤ |D|, it first computes
the WD graph G = (V, E,W). Then, given an IM RIS-based
algorithm A, it applies the AT1

T2
(G, k) algorithm as described

above. Note that the “while” loop in line 2 depends on the
input IM algorithm, which, as mentioned in Section II-B,

Algorithm 2: The Naı̈veCM algorithm.
input : A probabilistic datalog program (P,w), a

database D, a set T1 ⊆ D, a set T2 ⊆ P(D), a
number k, an IM algorithm A, and the
parameters δ and ε.

output: An (1 − 1
e − ε) optimal solution with

probability ≥ (1 − δ).

1 G ← build wd graph((P,w),D)
Apply AT1

T2
:

2 while Some condition over the approximation holds
do

3 i. Generate a collection of RR sets from G
4 ii. Use the greedy algorithm to find a k-size seed

set S that covers the maximum number of RR
sets;

5 return S

dynamically decides how many RR sets to generate (depending
on the required error rate ε and the success probability δ).

Proposition 4.1: The Naı̈veCM algorithm provides a (1 −
1
e − ε)-approximation to the CM problem, with probability ≥
(1 − δ), where ε and δ are given as input parameters.

While the complexity of top performing IM algorithms is
(nearly) linear in the graph size (as mentioned in Section II-B),
the complexity of Naı̈veCM is dominated by the procedure
for building the full WD graph, which is polynomial in D
(Proposition 3.3). However, as indicated by our experiments,
this naı̈ve approach is impractical for real-life scenarios.

B. The MagicS CM Algorithm

As mentioned in the Introduction, our optimized algorithm
employs two optimizations. We next detail our optimizations,
then provide the full MagicS CM algorithm.

1) On-the-fly subgraph constriction: Recall that Naı̈veCM
first constructs the full WD graph G, then runs an (adjusted) IM
algorithm. Also recall that the IM algorithm samples some idb
nodes, then constructs for each sampled node its corresponding
RR set, which consists of the edb nodes reachable from it
(in a reversed walk). In our first optimization, rather then
constructing the full WD graph G, we build, on-the-fly, for
each sampled idb tuple t, only the subgraph of G that is
reachable from t. For that we consider, for each sampled tuple
t, a top-down evaluation of the program P with the query
q = t. We apply the Magic-Sets transformation to obtain a
new program Pm

t that computes only the facts derived in this
evaluation, then assign probabilities to the rules, obtaining a
program (Pm

t ,w
m
t) having the following property: For every

tuple t ∈ P(D) and every possible RR generated from t, its
probability to be sampled in G equals to its probability to
be sampled (for tm) in the WD graph Gm generated using
(Pm

t ,w
m
t) and D. For brevity, in the following whenever t is

clear from the context we omit it and simply use Pm and
wm. For completeness of this paper, we first provide a short
overview of the classical Magic-Sets transformation technique,
then explain how and why it works here.

Magic-Sets. In a (semi-)naı̈ve datalog evaluation, the actual
query (e.g., testing if a given tuple was derived) is considered
only at the very end of program execution, after all idb facts

where derived. The Magic-Sets transformation rewrites the
program s.t. the rules can “fire” only when the derived idb fact
is relevant for the query. This is done by making the notion of
relevant facts explicit, encoding them as facts of new “magic
predicates” that now “adorn” the original program rules. This
transformation produces a program which is equivalent to the
original program for the given query, but often the number of
derived facts is much smaller than in the original program, and
includes only idb tuples that are relevant for the given query.

Given a datalog program P and a query
Q(u):-Q1(u1), . . . ,Qn(un), the Magic-Sets transformation
generates a program Pm as follows. For each idb relation
name A, Pm contains adorned predicates Aβ, and magic
predicates m Aβ, where β is an adornment annotation, i.e., a
string of b (for bound) and f (for free), with the same length
as the arity of A, describing the binding pattern in a top-down
evaluation. For each rule r, A:-B0, . . . , Bm in P the following
rules are generated:

AβA :-m AβA , Bβ0
0 , . . . , B

βm
m (1)

m Bβi
i :-m AβA , Bβ0

0 , ..., B
βi−1
i−1 ∀idb Bi, i ∈ [0,m] (2)

where Bβi
i = Bi is B if an edb relation. We call the rules of type

(1) and (2) modified rules and magic rules, resp. We denote by
origin(rm), the rule r ∈ P from which rm was generated. In ad-
dition, the rules m_Qβ(u):-, and Qβ(u):-Qβ1

1 (u1), . . . ,Q
βn
n (un)

are generated for the query rule. The first triggers the evalu-
ation process, and the latter represents the query result. We
refer to those rules as query rules. (for more details see [13]).

Example 4.2: Consider a simple probabilistic TC program,
that computes the transitive closure of a directed graph.

(1.0) r1 TC(X,Y):- E(X,Y)
(0.8) r2 TC(X,Y):- TC(X,Z), TC(Z,Y)

Let a and b two nodes in the graph, represented by a database.
The program generated by the Magic Sets transformation
(after removing redundant predicates and rules) for the query
Q():-TC(a,b) (a Boolean query that returns true if the fact
TC(a, b) is derived) is (ignore, for now, the rules wights):

(1.0) m1 TC
bb(X,Y):- m_TCbb(X,Y),E(X,Y)

(0.8) m2 TC
bb(X,Y):- m_TCbb(X,Y),TCb f(X,Z), TCbb(Z,Y)

(1) m3 m_TC
b f(X):- m_TCbb(X,Y)

(1) m4 m_TC
bb(Z,Y):- m_TCbb(X,Y),TCb f(X,Z)

(1.0) m5 TC
b f(X,Y):- m_TCb f(X),E(X,Y)

(0.8) m6 TC
b f(X,Y):- m_TCb f(X),TCb f(X,Z), TCb f(Z,Y)

(1) m7 m_TC
b f(Z):- m_TCb f(X),TCb f(X,Z)

(1) m8 Q():- TC
bb(a, b)

(1) m9 m_TC
bb(a, b):-

where m1,m2,m5 and m6 are modified rules, m8 and m9 are
query rules, and the rest are magic rules. origin(mi) = r1 for
i ∈ {1, 5}, and origin(mi) = r2 for i ∈ {2, 3, 4, 6, 7}. Intuitively,
the facts derived by the above program are facts that used in
the derivation of TC(a, b).

Employing Magic-Sets in our setting. Given a tuple
t ∈ P(D), let Pm

t (D) be the program generated by the Magic-
Sets transformation for the program P and the query Q():- t,
and let tm ∈ Pm

t (D) be the tuple corresponding to t in Pm
t (D)

(i.e., the tuple t in the adorned predicate in Pm
t (D), where all

variables are bounded). We apply Algorithm 1 on Pm
t (D) to

generate a graph which is analogous (though not identical)

to the subgraph of G which is reachable by a reversed walk
from tm. We note that while the program resulting form the
transformation contains a larger number of rules and relations,
the number of derived idbs is usually smaller (as typically,
not all edbs and rules are being used to derive a given
idb). We further show that ignoring the magic predicates,
the graph generated for (Pm,wm) is essentially isomorphic
to the corresponding subgraph of (P,w), with the ancestor
relationship (resp., weights of the outgoing edges) of the
original r(inst) nodes being identical to that of the correspond-
ing modified adorned rules. In fact, the size of Gm may be
reduced by not materializing the r(inst)-nodes of the magic
rules instantiations. To see why the graphs are not identical,
note that the derivation of a fact tm, using the program Pm

t ,
also includes instantiations to new magic predicates, which are
absent from the original program. Nevertheless, we can define
the probabilities of the new rules of Pm

t so that the probability
of each RR set to be sampled remains intact.

Definition 4.3: Given a probabilistic datalog program
(P,w) and an idb tuple t, let Pm be the program generated from
P by the above Magic-Sets transformation. The probabilistic
transformed program (Pm,wm) (for (P,w) and t) contains the
rules of Pm with wm(r) = w(origin(r)) for each modified rule
r, and wm(r) = 1 for all the magic and query rules.

We can prove that for every tuple t ∈ P(D) and every RR
set generated from t, its probability to be sampled in the WD
graph, equals to its probability to be sampled (for tm) in the
WD graph generated using (Pm,wm) and D (Proposition 4.4).
This critical property allows us to sample RR sets on-the-fly,
instead of materializing the full WD graph.

Proposition 4.4: Let G be the corresponding WD graph of
a datalog program (P,w) and a database D. For every tuple t ∈
P(D) and every possible RR set of edb fact of t, its probability
to be sampled in G equals to its probability to be sampled (for
tm) in the WD graph Gm generated using (Pm,wm) and D.

Putting it all together. We refer to Naı̈veCM enhanced
with this optimization as the MagicCM algorithm. To avoid
graph materialization, our adjusted IM-based algorithm AT1

T2
,

computes the RR set of each sampled idb tuple t ∈ T2 using
Algorithm 3. That is, Algorithm 3 applies the Magic-Sets
transformation to obtain the transform program (Pm,wm) (line
1), then, using Algorithm 1, generates the WD graph Gm of
(Pm,wm) and D (line 2). Finally, it generates a subgraph g from
Gm, and returns the set of edb nodes in T1 from which t is
reachable (lines 3–4), i.e., the desired RR set for t.

The differences between MagicCM and Naı̈veCM are: (1)
the full WD graph is not generated (line 1 of Algorithm 2
is removed) and (2) each call of the IM algorithm for an RR
set generation (line 3) is replaced by a call to Algorithm 3.
Namely, the only difference between Naı̈veCM and MagicCM
(the algorithm which employs only the Magic-sets optimiza-
tion) is how they access the WD graph, and hence they both
compute the same (approximated) solution to a given CM
instance (as they both run an IM-based algorithm over the WD
graph). We note that, in the worst case (i.e., where all edbs
and rules are being used to derive every idb in T2) MagicCM
builds the full WD graph for every sampled idb. Hence, in the
worst case, it could be equivalent of running Naı̈veCM θ times,
where θ is the number of generated RR sets. Nonetheless,

Algorithm 3: On-the-fly RR set generation.
input : A probabilistic datalog program (P,w), a

database D, a set T1 ⊆ D, and a tuple t ∈ T2
output: RR set of t

1 (Pm,wm)← magic set((P,w), t)
2 Gm ← build wd graph((Pm,wm),D)
3 Generate a sample graph g from Gm

4 return the set of nodes in T1 from which t is
reachable in g

as our experiments show, in real-life scenarios, MagicCM is
significantly more efficient than Naı̈veCM in terms of both
running times and memory consumption.

2) Sampled subgraph construction: Note that the subgraph
Gm generated (using the Magic-Sets transformation) for the RR
computation of a given idb tuple t, is sampled before usage,
and thus only the sampled edges are in fact useful. We may
thus further optimize MagicCM by incorporating this sampling
already in the graph generation (i.e., in Algorithm 1). This
may be done by considering the rules’ weights (in line 4),
generating the nodes and edges corresponding to instantiations
of each rule r with the probability of w(r). Namely, apply
the loop in lines 5–11 in Algorithm 1 with the probability of
w(r). Importantly, note that for every rule r ∈ P the magic
transformation may generate more than a single modified rule.
Therefore, to ensure consistency with the full WD graph, each
rule instantiation is drawn to fire only once, and thus the set
of all modified rules belong to the same rule are drawn to fire
“together”. Namely, we draw to fire-or-not the origin rules and
apply accordingly the decision on all modified rules.

Here again, note that MagicS CM computes the same
(approximated) solution as Naı̈veCM, and hence MagicS CM
provides a (1 − 1

e − ε)-approximation to CM with probability
≥ (1 − δ). Regarding MagicS CM time and space complexity,
in the worst case, no sampling was done (e.g., if all rules
probabilities are equal to 1) and it operates as MagicCM.
Nonetheless, as we show in our experiments, this simple
modification in practice significantly reduces the size of the
materialized subgraphs as well as the RR sets generation time.

We conclude this section with two remarks.

Remark 1: Recall that in MagicCM we generate a
subgraph Gm for each sampled idb tuple. We note that these
subgraphs may have common parts which are thus being re-
generated multiple times. To avoid this repetition, one may
build a single subgraph that is the union of the individual sub-
graphs. This can be done by employing the Magic-Sets trans-
formation for the more general query that contains all sampled
idb facts, and compute all RR sets directly from this subgraph.
This would replace the per-tuple graph construction/RR set
computation in line 2 of Algorithm 3. We refer to MagicCM
enhanced with this grouping as MagicGCM. However, our
sampling optimization cannot be employed for this merged
graph because the subgraphs sampling performed for each
RR set must be done independently, which is not possible
when the graphs are merged together. This, as we show in
our experiment, results in poor performance since the program
resulting from the Magic-Sets transformation for a set of tuples
contains large number of rules, which significantly affects the
graph size and its generation time.

Remark 2: Generally, the number of RR sets generated
by RIS-based IM algorithms is a function of the graph size,
the required error rate (ε), and the success probability (δ) [19],
[20]. In our case, since we avoid materializing the WD graph
and generate instead RR sets on demand, the actual graph size
is unknown. Thus we use upper bounds on the number of edges
and nodes, that we prove to hold (see proof in [14]). Note that
generating more sets than the minimal number required only
makes the result approximation tighter.

V. Experimental study

We experimentally examine the scalability of our algo-
rithm, demonstrating the effectiveness of the proposed opti-
mizations, in multiple real-life scenarios. We conclude with a
case study, demonstrating the quality of our measure and the
approximated algorithms. We have implemented all algorithms
in JAVA 8 by extending IRIS [22], a JAVA- based system for
datalog evaluation. The experiments were executed on a Linux
server with a 2.1GHz CPU and 96GB memory.

Datasets: We have experimented with multiple
datasets, commonly used in the literature, which suitably
include both datalog rules and an underlying database (based
on the benchmark presented in [3]). These datasets include
both non-recursive programs (e.g., IRIS) and (linear/bilinear)
recursive programs (e.g., AMIE). Full details are provided in
[14]. Unless stated otherwise, all rules have been randomly
assigned with probabilities in the range of [0, 1].
IRIS [22]. A non-recursive program, consists of 8 rules and
generates up to 4.26M tuples.
AMIE. A recursive datalog program consisting of rules mined
by AMIE [2], with weights reflecting the rule confidence. The
input database is that of YAGO [5]. The program consists of
23 rules that generate up to 1.45M tuples.
Explain. The recursive datalog program, consists of 3 rules, as
described in [23]. The database was randomly populated and
gradually growing so that the output size is up to 0.5M tuples.
Transitive Closure. We have used a recursive program consist-
ing of 3 rules, computing Transitive Closure in an undirected
graph. The database was randomly populated to represent fully
connected graphs, yielding output sizes of up to 4M tuples.

A. Experimental setup

To quantify the usefulness of each proposed optimization,
we examine the following baselines. (i) Naı̈veCM, the algo-
rithm which employs no optimization. (ii) MagicCM, which
employs only our Magic-Sets optimization; (iii) MagicS CM,
our proposed algorithm which enhances the Magic-Sets opti-
mization with sampling. For completeness, we also consider
the MagicGCM algorithm (described at Section IV), which
employs both the Magic-Sets and the grouping optimizations,
demonstrating it to be less effective than MagicS CM.

All examined algorithms employ an RIS-based IM algo-
rithm and therefore, they all first generate RR sets. Then, to find
a k-size set of tuples with the heights contribution, the same
instance of the Maximum Coverage (MC) problem is solved
(as IM algorithms). The value of k affects only this last phase
of solving the MC instance, and hence, have the same effect on
this (identical) last phase of all algorithms. Thus, to evaluate
the differences between the algorithms, we compare only the

0.0M 1.0M 2.0M 3.0M 4.0M
Number of tuples

10
1

10
1

10
3

10
5

10
7

G
ra

ph
 S

iz
e

NaiveCM
MagicCM
MagicSCM

(a) TC dataset

0K 50K 100K 150K
Number of tuples

10
1

10
1

10
3

10
5

10
7

G
ra

ph
 S

iz
e

NaiveCM
MagicCM
MagicSCM

(b) Explain Dataset

1.0M 2.0M 3.0M 4.0M
Number of tuples

10
1

10
1

10
3

10
5

10
7

G
ra

ph
 S

iz
e

NaiveCM
MagicCM
MagicSCM

(c) IRIS Dataset

0.5M 1.0M 1.5M
Number of tuples

10
1

10
1

10
3

10
5

10
7

G
ra

ph
 S

iz
e

MagicSCM

(d) AMIE Dataset
Fig. 2: Memory consumption (amortized per RR set for Naı̈veCM) as a function of number of output tuples.

0.0M 1.0M 2.0M 3.0M 4.0M
Number of tuples

10
1

10
1

10
3

10
5

10
7

R
un

tim
e

[m
se

c]

NaiveCM
MagicCM
MagicSCM

(a) TC dataset

0K 50K 100K 150K
Number of tuples

10
1

10
1

10
3

10
5

10
7

R
un

tim
e

[m
se

c]
NaiveCM
MagicCM
MagicSCM

(b) Explain Dataset

1.0M 2.0M 3.0M 4.0M
Number of tuples

10
1

10
1

10
3

10
5

10
7

R
un

tim
e

[m
se

c]

NaiveCM
MagicCM
MagicSCM

(c) IRIS Dataset

0.5M 1.0M 1.5M
Number of tuples

10
1

10
1

10
3

10
5

10
7

R
un

tim
e

[m
se

c]

MagicSCM

(d) AMIE Dataset
Fig. 3: RR set generation time (including amortized graph generation for Naı̈veCM) as a function of number of output tuples.

generation time for the RR sets (which is what impacts the dif-
ference in running time), and the generated WD (sub)graph(s)
size(s) (which reflects the memory consumption).

We note that the main difference between the algorithms
is reflected in the size of the (sub)graphs each algorithm
generates for the sake of RR sets computation. Therefore, we
report the (averaged) constructed graph dimensions (the same
trends hold for the maximum). Furthermore, we point out that
for the same input MagicCM, MagicGCM and MagicS CM
generate the same number of RR sets (as explained in Section
IV), whereas Naı̈veCM may generate less RR sets, as the exact
dimensions of the graph are known. Nonetheless, according
to our experiments, the number of RR sets generated by the
optimized algorithms was in the same order of magnitude of
the number of RR sets Naı̈veCM had generated.

Last, note that even though MagicCM and MagicS CM
generate multiple subgraphs of the WD graph (one per each
RR set), each such subgraphs is being used only once (for the
sake of an RR set computation) and thus there is no need to
keep it in memory. In contrast, Naı̈veCM and MagicGCM keep
one (sub)graph in memory throughout the algorithm run, and
generate all RR sets from it. Furthermore, Naı̈veCM generates
the same full WD graph, regardless of the number of RR sets.

Parameter Settings: We use, as a default setting, k = 10
and ε = 0.1, which are commonly used values for RIS-based
IM algorithms [19], [20]. We set T1 to be the set of all input
tuples, and randomly select 100 output tuples as T2 - the set of
output tuples of interest. We note that in a real-life scenario,
the user often wishes to focus on surprising/unexpected output
tuples, and that the number of tuples that are investigated
simultaneously is typically small [3], [6]. The examined output
tuples were derived from multiple rules and different portions
of the input tuples (See full details in [14]). As we shell see,
in all cases, our optimized algorithms materialize only small
parts of the WD graph, which demonstrates the robust nature
of our optimizations. We report that the results obtained over
other choices of these parameters demonstrated similar trends,
and thus are omitted from presentation. Unless mentioned

otherwise, the number of RR sets sampled for each experiment
was set to be 30% of |T2|, which is a typical number of samples
for top performing IM algorithms.

B. Experimental results

Varying data size: Here we aim at studying the algo-
rithms’ performance as a function of number of derived tuples.
To this end, we used varying input data sizes to generate
increasing number of output tuples. Figures 2 and 3 show
the resulting averaged WD (sub)graph size for a single RR
set computation, and its generation time, resp. (in log scale).
We amortized the WD graph generation time of Naı̈veCM to
compute the generation time for a single RR set, by dividing
the total generation time by the number of generated RR sets.
We state the in these experiments, as considering a single RR
set, MagicGCM and MagicCM are completely identical, and
thus we omit the results of MagicGCM here.

We first consider Figure 2, where the x-axis represents
the number of output tuples and the y-axis the generated
(sub)graph(s) size (i.e., the sum of nodes and edges). Figure
2a shows the results for TC. Generating the WD graph for
Naı̈veCM was infeasible beyond 1M tuples (that were gener-
ated using only 1K input tuples). The memory consumption
of MagicCM was less than 1% compared to Naı̈veCM. For
MagicS CM, the largest graph generated contained only 4
nodes and 3 edges. The WD graph was feasible for Naı̈veCM
only for Explain (Figure 2b). The largest WD graph contained
225, 957 nodes and 299, 193 edges. The memory consumption
of MagicCM was less than 0.02% compared to Naı̈veCM.
Generating the WD graph beyond 2.27M tuples was infeasible
for Naı̈veCM for IRIS (Figure 2c). The WD subgraph size
generated by MagicS CM for AMIE is depicted in Figure
2d. Here, generating the WD (sub)graph for Naı̈veCM and
MagicCM was infeasible, even for small number of input
tuples, because of the high complexity of the program that
leads to a huge number of rule instantiations.

We next consider Figure 3, where the x-axis is the number
of derived tuples and the y-axis are the running times in

0% 25% 50% 75% 100%
Percent out of T2

10
1

10
3

10
5

10
7

G
ra

ph
 S

iz
e NaiveCM

MagicCM
MagicSCM
MagicGCM

(a) TC dataset

0% 25% 50% 75% 100%
Percent out of T2

10
1

10
2

10
3

10
4

10
5

G
ra

ph
 S

iz
e NaiveCM

MagicCM
MagicSCM
MagicGCM

(b) Explain Dataset

0% 25% 50% 75% 100%
Percent out of T2

10
2

10
4

10
6

G
ra

ph
 S

iz
e NaiveCM

MagicCM
MagicSCM
MagicGCM

(c) IRIS Dataset

0% 25% 50% 75% 100%
Percent out of T2

10
6

10
7

G
ra

ph
 S

iz
e

MagicSCM

(d) AMIE Dataset
Fig. 4: Maximal memory consumption as a function of the number of RR sets.

0% 25% 50% 75% 100%
Percent out of T2

10
2

10
3

10
4

10
5

R
un

tim
e

[m
se

c]

NaiveCM
MagicCM
MagicSCM
MagicGCM

(a) TC dataset

0% 25% 50% 75% 100%
Percent out of T2

10
1

10
2

10
3

10
4

R
un

tim
e

[m
se

c]
NaiveCM
MagicCM
MagicSCM
MagicGCM

(b) Explain Dataset

0% 25% 50% 75% 100%
Percent out of T2

10
1

10
3

10
5

10
7

R
un

tim
e

[m
se

c]

NaiveCM
MagicCM
MagicSCM
MagicGCM

(c) IRIS Dataset

0% 25% 50% 75% 100%
Percent out of T2

10
6

10
7

R
un

tim
e

[m
se

c]

MagicSCM

(d) AMIE Dataset
Fig. 5: Total running time as a function of number of RR sets.

milliseconds (including the amortized graph generation time
for Naı̈veCM). For TC (Figure 3a), again Naı̈veCM was
feasible for up to 1M output tuples. Using MagicCM, the
RR set generation time was around one second for the largest
number of tuples, and 15ms using MagicS CM. For Explain
(Figure 3b), the total computation time was about 0.5 sec,
150ms and less than 20ms for the Naı̈veCM, MagicCM and
MagicS CM resp. For IRIS (Figure 3c), generating the graph
for Naı̈veCM took over 23 hours for the largest feasible data
size, and computing a single RR set took 27 minutes. The
total computation time was roughly 8 minutes for the largest
number of tuples in AMIE, using MagicS CM (Figure 3d).

Number of RR Sets: Figures 4 and 5 present the
memory consumption and running times as a function of the
number of generated RR sets, resp. (in log scale). To this
end, we varied the number of RR sets from 1% to 100%. We
examine the performance for various number of output tuples,
and we report the results for the largest number of output tuples
where all algorithms were feasible (1M tuples for TC, 151, 700
for Explain, and 2.27M for IRIS). We observed similar trends
for other numbers of tuples. For AMIE, only MagicS CM
was feasible and thus, Naı̈veCM, MagicCM and MagicGCM
are omitted from the graphs. The results presented are for
1.45M tuples. Recall that MagicCM and MagicS CM generate
multiple subgraphs of the WD graph, each of those subgraphs
is being used only once. Thus, the memory consumption does
not depend on the number of RR sets generated. MagicGCM,
on the other hand, keeps one subgraph in memory throughout
the algorithm run, and the subgraph generated depends on the
number of RR sets, thus we expect to see a moderate growth
in the memory consumption as a function of the number of
RR sets. Finally, Naı̈veCM generates the same full WD graph
regardless of the number of RR sets.

We consider first Figure 4, where the x-axis represents the
number of RR sets (as the percentage of T2), and the y-axis is
the averaged graph size (sum of nodes and edges). Here again,
MagicS CM outperformed the competitors in all datasets. The
results for TC are presented in Figure 4a. The WD subgraph

generated by MagicGCM is relatively large here, since the
graph represented by the database is fully connected. The
results for Explain (4b) and IRIS (Figure 4c) showed similar
trends with moderate growth on the memory consumption of
MagicGCM. The WD subgraph generated by MagicS CM for
AMIE contained (on average) around 1M nodes and 3M edges.

Last, consider Figure 5, where the x-axis represents the
percent of T2 tuples selected to generate the RR sets, and
the y-axis is the runtime in milliseconds. Not surprisingly, as
Naı̈veCM generates the full WD regardless of the number of
RR sets, and the graph generation is the dominant time of its
computation, the overall runtime of Naı̈veCM is much higher
than the alternatives. We can also see that the performance of
MagicGCM is highly depended on the WD graph structure and
the sampled nodes in T2. It performs well when the derivation
trees for the facts in T2 overlap in the WD graph is large
(i.e., they share the same nodes and edges). In TC (Figure
5a) MagicS CM outperformed MagicCM and MagicGCM, that
showed similar results. The results for Explain (Figure 5b)
were roughly the same, with differences of milliseconds. For
IRIS (Figure 5c MagicGCM is a bit faster because of the
WD graph structure and large overlap in the derivation trees,
however the differences are in milliseconds. Finally, as noted
above, for AMIE, only MagicS CM was feasible.

C. A case study

We next present a case study whose goal is twofold:
First, we demonstrate the intuition underlying our proposed
contribution measure, illustrating how it indeed captures the
most influential tuples for a program output. Second, we
quantitatively evaluate the accuracy of the approximation al-
gorithms. Recall that all of our algorithms compute the same
solution for a given CM instance (as they all run an RIS-based
IM algorithm over the WD graph). Therefore, here we focus
only on the MagicS CM algorithm, comparing its results to the
optimal solution for a given CM instance, referred to as OPT.
In this set of experiments we consider a standard TC program,
whose computation is easy to follow. We note that for the
scenarios examined in Section V-B, as they involve complex

a1

a2

a3

a4

a
u1 u2

v2v1

Fig. 6: An example graph with a star-subgraph of size 5 and
two “sink” nodes.

0 2000000 4000000
Number of tuples

0

1000000

2000000

3000000

4000000

5000000

C
on

tri
bu

tio
n

MagicSCM
OPT

(a) Connected star-subgraphs.

0.2 0.4 0.6 0.8 1.0
The WD graph density

25000

50000

75000

100000

125000
C

on
tri

bu
tio

n
MagicSCM
OPT

(b) Random graphs.
Fig. 7: The contribution sizes of MagicS CM and OPT.

datalog programs and/or large databases, computing OPT is
infeasible (as well as following the full derivation process).

Consider again the probabilistic TC problem presented in
Example 4.2, and a directed graph (representation by an edge
relation) consisting of a star subgraph of size l, where the
internal node is connected to m additional “sink” nodes with
paths of length 2. Figure 6 depicts such graph with a star
subgraphs of size l = 5, and m = 2 sink nodes. Assume
that one is wishes to find which two edb tuples (i.e., edges in
the graph) contribute the most to the derivation of the tuples
of the form TC(ai, u2) and TC(ai, v2), i = 1, ...4 (namely the
reachability from the ai’s to u2 and v2). This can be useful, e.g.,
for finding a small-size “bottle neck” in the paths leading from
the ai’s to u2 and v2. Observe that the edges (a, u1) and (u1, u2)
participate in all derivations of the TC(ai, u2) tuples, whereas
the edges (a, v1) and (v1, v2) participate in all derivations of
the TC(ai, v2) tuples. Intuitively, to maximally contribute to
both sets, we need to pick one of the (a, v1), (v1, v2) edges
and one of the (a, u1), (u1, u2) edges. Indeed, any such pair
yields the maximal contribution score. Note that all four
edges ((a, v1), (v1, v2), (a, v1), (v1, v2)) have the same individual
contribution scores. Thus, selecting the top 2 tuples with the
highest individual contribution score (instead of selecting a 2-
size set with the maximal joint contribution) may yield the pair
(a, u1), (u1, u2) (by breaking equality arbitrarily), which fails to
capture the essence of a “bottle neck” pair for both u2 and v2.

In this small example, MagicS CM also returns the optimal
solution. However, when it comes to larger database (i.e.,
graphs), it may return an approximated solution. To measure
the quality of approximation, Figure 7 depicts the results of
OPT and of MagicS CM over gradually growing instances
of CM. We report the averaged results of MagicS CM of
10 runs. As expected, in all cases, the contribution size of
MagicS CM was at least (1 − 1

e)-fraction of the contribution
size OPT. Generally, as in IM algorithms, the approximation
ratio of MagicS CM depends on the WD graph structure: the
more dense the WD graph is, the better is the approximation
that MagicS CM (and IM algorithms) achieves. For example,
in fully connected WD graphs (i.e., in CM instances where
all edbs are used to derive every idb), we get a perfect

solution, whereas in sparse WD graphs (i.e., in CM instances
where a distinct set of edbs is used to derive each idb) the
approximation could be as worse as (1 − 1

e).

To illustrate, consider first Figure 7a, where the x-axis rep-
resents the number of idbs using star-like graphs while varying
the parameters m and l3, and the y-axis is the contribution size
of the optimal solution/the solution returned by MagicS CM.
In these star-like graphs, the contribution size of OPT (nearly)
equals to the number of idbs, and the worst approximation
ratio measured was 0.8. This relatively high ratio achieved
due to the fact that the corresponding WD graphs are dense
graphs, and the edges to the sink nodes (i.e., red edges in
Figure 6) are hub nodes the WD graphs (i.e., nodes with a
number of edges that greatly exceeds the average). Figure 7b
depicts the results of MagicS CM and OPT of the probabilistic
TC program executed over random graphs with 500 nodes4.
The x-axis is the WD graph density d =

|E|
|V |·(|V |−1) , and the y-axis

is the contribution size. One can see that on fully connected
WD graphs (i.e., where d = 1), MagicS CM gets a perfect
approximation ratio of 1, while on sparse WD graphs (e.g.,
d = 0.1), the approximation ratio is ≈ 0.63.

VI. Related Work

There is a wealth of work on query results explanation.
Closest to our work is a line of works providing alternative
explanations on how a result was derived, by pointing on
database facts that significantly affect the results [8], [6],
[7], [9]. However, those works have focused on non-recursive
SQL queries, very often disregarding probabilistic inference.
To analyze probabilistic datalog programs, one must consider
the potentially involved transitive relationship between input
and output data, and the uncertainty should be reflected in
the computation. Another important difference is the fact
that previous works have mainly focused on quantifying the
contribution of a single database tuple to a single output tuple,
whereas we consider the the joint contribution of a set of input
tuples to a set of output tuples. Therefore, the relationship
between individual tuple contributions is also considered.

Among the variety of works in this direction, our approach
is most similar to the work presented in [6], where Meliou
et al. have defined the notion of causality and degree of
responsibility for SQL queries, for a single input/output tuple.
Responsibility serves to rank potentially many causes by their
relative contributions to a query outcome. Naturally, the setting
of SQL queries can be seen as a simple case of probabilistic
datalog programs. However, when considering the contribution
of a single database tuple to a single output fact in this setting,
our contribution function provides an alternative definition
to the responsibility function, as we quantify the marginal
contribution of a tuple to an output tuple independently of
other derivations in the program. Contrarily, the responsibility
definition in [6] is affected by the dependencies among the
database facts, as it quantifies causality of a tuple t to an
answer a by considering the size of a set Γ such that after
removing Γ from the database, we bring it to a state where

3We focus on such graphs since on these graphs OPT can be computed
directly (avoiding an exhaustive search which is infeasible for large graphs).

4We note that even on such small graphs (i.e., databases), the corresponding
WD graph contains ≈ 100K nodes, and finding OPT requires to examine all(
|V |
k

)
seed sets, which was infeasible for larger databases.

removing/inserting t causes a to switch between an answer and
non-answer to the query. Our work and theirs are thus com-
plementary, providing two alternative angles of involvement in
the result computations.

Another line of works utilize the data provenance, provid-
ing an explanation for a query results, as it captures the essence
of the computation performed by queries. Provenance informa-
tion was shown to be useful for query results explanation [8],
[3], [24], [25], [26], [27]. Particularly, provenance for datalog
was studied in [11], [3], [12]. Our WD graph captures the
conventional datalog provenance, as defined in [12]. However,
while theoretical analysis of the provenance size shows that
it is polynomial in that of the input database, there is a
practical blowup of it. To overcome this, different works have
studied techniques for the factorization or summarization of
provenance [12], [28], [29], [30], which differs then the goal
of identifying important input tuples. Provenance summariza-
tion/approximation for explanation for non-recursive programs
was studied in [31]. Selective provenance tracking for Nested
Relational Calculus was presented in [32] and for datalog in
[3]. The method presented in [3] provides explanations for
datalog programs output, based on derivation tree, using user-
defined patterns. As noted, [3] assumes that the user has prior
knowledge on the database tuples and their contribution to the
output, thus our framework is complementary to [3], as it can
provide such information. Integrating the two solutions into a
single system is left for future work.

Our work harnesses algorithms developed for the Influence
Maximization (IM) problem as a component of our solution.
The seminal work of [10], the first to formulate the IM
problem, has motivated extensive research [16], [20], which
can be classified into two main approaches for solving IM:
(i) The greedy framework [10], [33], which iteratively adds
nodes to the seed set s.t. each addition maximizes the expected
marginal influence gain; (ii) More recently, the Reverse Influ-
ence Sampling (RIS) framework has been proposed in [16],
where, while retaining optimal accuracy, running times were
gradually improved, resulting in highly scalable algorithms of
near-optimal time complexity [18], [20], [19]. As explained in
Section IV, any given RIS-based IM algorithm can be adjusted
to solve the CM problem, retaining the same properties.

VII. Conclusions and Future Work

In this work we have presented the CM problem for
probabilistic datalog programs, and devised an efficient al-
gorithm which integrates IM algorithms with the Magic-Sets
transformation technique. We are currently pursuing an im-
plementation of a graphical interface, allowing users to easily
specify their input/output tuple-set of interest, using patterns.
Further directions for future research include the development
of additional index-based optimization and the incorporation
of user constraints for the properties of the returned output.
For instance, for diversification, require that every selected
database tuple will come from a different table in the database.

Acknowledgment: This work has been partially funded
by the Israel Innovation Authority, MDM, the Israel Science
Foundation, the Binational US-Israel Science foundation, Len
Blavatnik, the Blavatnik Family foundation, and the European
Research Council (ERC) under the European Unions Horizon
2020 research and innovation programme (grant No. 804302).

References

[1] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, and C. Zan-
iolo, “Big data analytics with datalog queries on spark,” in SIGMOD.
ACM, 2016.

[2] L. A. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek, “Amie:
association rule mining under incomplete evidence in ontological
knowledge bases,” in WWW, 2013.

[3] D. Deutch, A. Gilad, and Y. Moskovitch, “Selective provenance for
datalog programs using top-k queries,” PVLDB, 2015.

[4] V. Bárány, B. T. Cate, B. Kimelfeld, D. Olteanu, and Z. Vagena,
“Declarative probabilistic programming with datalog,” TODS, 2017.

[5] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic
knowledge,” in WWW. ACM, 2007.

[6] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu, “The complexity
of causality and responsibility for query answers and non-answers,”
PVLDB, 2010.

[7] B. Kanagal, J. Li, and A. Deshpande, “Sensitivity analysis and ex-
planations for robust query evaluation in probabilistic databases,” in
SIGMOD, ser. SIGMOD ’11, 2011.

[8] S. Roy and D. Suciu, “A formal approach to finding explanations for
database queries,” in SIGMOD, 2014.

[9] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu, “Why so? or why
no? functional causality for explaining query answers,” arXiv, 2009.

[10] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in SIGKDD, 2003.

[11] T. J. Green, G. Karvounarakis, and V. Tannen, “Provenance semirings,”
in PODS, 2007.

[12] D. Deutch, T. Milo, S. Roy, and V. Tannen, “Circuits for datalog
provenance.” in ICDT, 2014.

[13] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.
Addison-Wesley, 1995.

[14] “Technical report,” 2019.
[15] S. Bistarelli, F. Martinelli, and F. Santini, “Weighted datalog and levels

of trust,” in ARES. IEEE, 2008.
[16] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing social

influence in nearly optimal time,” in SODA. Society for Industrial and
Applied Mathematics, 2014.

[17] V. V. Vazirani, Approximation algorithms. Springer Science & Business
Media, 2013.

[18] Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-linear
time: A martingale approach,” in SIGMOD, 2015.

[19] K. Huang, S. Wang, G. Bevilacqua, X. Xiao, and L. V. S. Lakshmanan,
“Revisiting the stop-and-stare algorithms for influence maximization,”
PVLDB, 2017.

[20] H. T. Nguyen, M. T. Thai, and T. N. Dinh, “Stop-and-stare: Optimal
sampling algorithms for viral marketing in billion-scale networks,” in
SIGMOD. ACM, 2016.

[21] Y. Li, D. Zhang, and K.-L. Tan, “Real-time targeted influence maxi-
mization for online advertisements,” PVLDB, 2015.

[22] “Iris reasoner,” http://www.iris-reasoner.org, 2018.
[23] T. Arora, R. Ramakrishnan, W. G. Roth, P. Seshadri, and D. Srivas-

tava, “Explaining program execution in deductive systems,” in DOOD.
Springer, 1993.

[24] D. Deutch, N. Frost, and A. Gilad, “Provenance for natural language
queries,” PVLDB, 2017.

[25] S. Lee, B. Ludäscher, and B. Glavic, “Provenance summaries for
answers and non-answers,” PVLDB, 2018.

[26] P. Bourhis, D. Deutch, and Y. Moskovitch, “Analyzing data-centric
applications: Why, what-if, and how-to,” in ICDE, 2016.

[27] P. Buneman, S. Khanna, and W. C. Tan, “Why and where: A charac-
terization of data provenance,” in ICDT, 2001.

[28] R. Fink, L. Han, and D. Olteanu, “Aggregation in probabilistic databases
via knowledge compilation,” PVLDB, 2012.

[29] C. Ré and D. Suciu, “Approximate lineage for probabilistic databases,”
PVLDB, 2008.

[30] E. Ainy, P. Bourhis, S. B. Davidson, D. Deutch, and T. Milo, “Approx-
imated summarization of data provenance,” in CIKM, 2015.

[31] S. Lee, X. Niu, B. Ludäscher, and B. Glavic, “Integrating approximate
summarization with provenance capture,” in TaPP, 2017.

[32] J. Cheney, A. Ahmed, and U. A. Acar, “Database queries that explain
their work,” in PPDP, 2014.

[33] A. Goyal, W. Lu, and L. V. Lakshmanan, “Celf++: Optimizing the
greedy algorithm for influence maximization in social networks,” in
WWW. ACM, 2011.

http://www.iris-reasoner.org

	Introduction
	Preliminaries
	Probabilistic Datalog
	Influence Maximization

	Problem Definition
	The Weighted Derivation (WD) Graph
	Problem Formulation
	The Contribution Maximization (CM) problem

	Algorithms
	The NaïveCM Algorithm
	The MagicSCM Algorithm
	On-the-fly subgraph constriction
	Sampled subgraph construction

	Experimental study
	Experimental setup
	Experimental results
	A case study

	Related Work
	Conclusions and Future Work
	References

