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Abstract—As more and more social network users interact
through Internet Memes, an emerging popular type of captioned
images, there is a growing need for users to quickly retrieve the
right Meme for a given situation. As opposed conventional image-
search, visually similar Memes may reflect different concepts.
Intent is sometimes captured by user annotations (e.g., tags),
but these are often incomplete and ambiguous. Thus, a deeper
analysis of the relations among Memes is required for an accurate,
custom search. To address this problem, we present SimMeme, a
Meme-dedicated search engine. SimMeme uses a generic graph-
based data model that aligns various types of information about
the Memes with a semantic ontology. A novel similarity measure
that effectively considers all incorporated data is employed, and
serves as the foundation of our system. Our experimental results
achieve using common evaluation metrics and crowd feedback,
over a large repository of real-life annotated Memes, show that
in the task of Meme retrieval, SimMeme outperforms state-of-
the-art solutions for image retrieval.

I. INTRODUCTION

With the ubiquity of social-media platforms like Flickr,
TuDing and Instagram, Internet Memes have grown from a pe-
culiar subculture to a widespread phenomena, dramatically af-
fecting online-marketing and interpersonal communication[1].

Internet Memes are media items, mostly captioned im-
ages with a sarcastic or humorist intent that are proliferated
across the internet (example Memes are depicted in Figure 1).
The term “Meme" was originally coined by the evolutionary
biologist R. Dawkins as the corresponding cultural unit to
the biological gene [2]. Since an increasing amount of social
networks users are interacting through Memes to express
opinions and emotions [3], there is a growing need to quickly
retrieve the right Meme for a given user query. To this end,
we present SimMeme, a Meme-dedicated search engine.

Adequate retrieval of Memes, as opposed to regular images,
is particularly challenging since: (i) They convey semantic
meaning beyond their visual appearance; (ii) The associated
text (caption) is often ironic and thus captions that contain
common words may express different ideas; (iii) Since Memes
typically propagate through social networks, they are often
accompanied by user-annotated tags. While such tags provide
meaningful semantic information, they are often incomplete or
ambiguous, and therefore hard to utilize.

To illustrate, consider the following example.

Example I.1. Consider the dashed part of Figure 1, depicting
three Memes and their associated tags, in a form of a graph.
While Meme C is more similar visually to Meme B than
Mem A (identical background images, a common case for
Memes), Meme A is more similar semantically, since both

Memes are related to the act of feeding a baby. Also observe
that Memes A and C are textually similar (starting with the
same text, also typical for Memes), while semantically they
describe different intent. This simple example demonstrates
that different properties of the Memes (caption, image or tags)
can be utilizes to define different search criteria (e.g., search
by visual appearance, textual similarity, etc.).

We argue that an ideal Meme search engine should (i)
adequately record relevant information about the Memes (i.e.,
visual, semantic and textual information); (ii) provide an
expressive interface that enables users to specify their search
preferences (e.g., define the importance of visual appearance);
and (iii) efficiently retrieve the relevant set of Memes for a
given user query. SimMeme, as we will present next, has
dedicated constructs to account for these needs.

To the extent of our knowledge, SimMeme is the first
dedicated Meme search engine. Up until now, Meme-retrieval
has been typically handled using general-purpose image search
systems. General-purpose image retrieval has received much
attention in the literature and can be divided into three main
categories: (i) Content Based Image Retrieval (CBIR), which
relies mostly on visual features [4]. This approach cannot
be easily applied for Meme retrieval, as it suffers from the
well-known “semantic-gap” problem, where visual features
are not correlated with high-level semantic concepts (e.g.,
irony) that are especially prevalent in Memes. (ii) Text Based
or Tag Based Image Retrieval (TBIR/TagIR) [5], [6], which
emphasize external textual sources (e.g., the surrounding text
of an image, tags). While the TBIR approach is highly useful
when the images are taken from websites such as Wikipedia,
it is less suited for Memes, which are often associated with
a small number of users tags. On the other hand, the TagIR
approach is mainly based on the relevance between the image
tags and the query keywords. It tends to overlook the textual
and visual properties, which may be more important to the
user in a given context. (iii) Hybrid approaches [7], [8],
which consider both textual and visual features. These works
often rely on representation learning techniques (such as
embedding) to obtain a unified representation of the images,
comprising of features derived from both textual and visual
properties. While the hybrid approach often outperforms the
former three (or any naïve combination of them) in general
image retrieval, such solutions do not allow for the flexibility
and expressibility desired in Meme search (see Section IV).

In summary, the problem we consider in this paper is the
Meme retrieval task, which, as opposed to image retrieval,
requires to address user-defined search criteria. In contrast
to previous work, SimMeme takes a holistic approach that
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Fig. 1: Example HIN, aligning structural relations (among tags and Memes) with semantic ontology.

integrates all available data about the Memes, and allows users
to indicate the importance of both the visual appearance and
semantic meaning. Our experiments show that our approach
outperforms general-purpose image-retrieval competitors in the
Meme-retrieval task.

Our work is comprises of the following key contributions:

Heterogeneous Knowledge Representation: SimMeme
models the various information on Memes using a simple yet
rich and flexible graph-based data model. The visual and tex-
tual features extracted from the Memes (using external tools,
e.g., [9], [4]) are all represented in a single Heterogeneous
Information Network (HIN). To reveal the tags’ semantics, we
align the HIN with an external semantic knowledge base (i.e.,
an ontology), using standard alignment tools [10]. See Figure 1
for an example. Memes and tags are represented as nodes, and
the various types of weighted-edges connecting them include:
(1) Meme-Tag edges, where weights reflect the relevance
between a tag and its associated Meme, if specified by users;
(2) Visual and (3) Textual resemblance edges between Memes,
where weights reflect the visual/textual resemblance; and (4)
Ontology edges, which describe the semantic relations among
the tags. The flexibility of this model, derived from its schema-
less nature, allows to incorporate any other data related to the
Memes (e.g., information about the Memes’ creators).

Compound Meme-Similarity Assessment: Over the
HIN, we devise a novel similarity measure that effectively
considers all data incorporated, and serves as the main building
block of our system. This measure is used to quantify the
degree of relevance of a given Meme w.r.t. a user query.
Our similarity function is declaratively defined, and thus, as
opposed to most machine learning based measures [4], [5],
[11], [12], can be easily interpreted and tuned according to
the user requirements.

Our proposed measure refines SimRank [13], a well-studied
similarity measure for information networks. Intuitively, Sim-
Rank quantifies the similarity of two network nodes based on
the evaluation of the compound similarity of their network
neighbors. However, SimRank does not consider semantic
knowledge and edge weights. To overcome this, we refine
SimRank by enriching its link-similarity definition with edge

weights and semantic similarity. While this incorporation is
simple and intuitive, it poses several performance challenges.

To maintain an efficient evaluation, we devise two opti-
mization techniques, one is based on semantic pruning and
the second is a probabilistic framework for computing approx-
imated similarity scores, anchored in a careful modification
of the underlying random surfer model of SimRank. For the
latter, we define the Semantic-Aware Random Walk Model,
which extends the standard uniform random walk model of
SimRank. Then, we show how to harness Importance Sampling
to attain an efficient computation in our setting. Importantly,
our refined framework allows for a direct adaptation of existing
optimizations previously proposed for SimRank (e.g., [14]).

Meme-Dedicated Search Interface: With SimMeme,
users can query the Meme repository by providing a set of
keywords, an example image/Meme, or both. Its advanced
search features allow users to specify the weight of each
keyword, and to alter the weights of textual and visual features,
thus customizing the definition of Meme-relevance. Results are
returned in semantically meaningful clusters (see Figures 2a
and 2b), thereby enabling users to quickly focus on the group
of Memes most relevant to their intent. SimMeme further
provides users with an explanation for why a specific Meme
is proposed, highlighting the semantic, visual and textual rela-
tions of the retrieved Meme to the given query (see Figure 3).

Experimental Evaluation: As Meme repositories are
not yet publicly available for research purposes, we built a
tagged-Meme database, comprising of 10K Memes collected
by web crawling. We then used a crowdsourcing platform to
tag the Memes. Since, to our knowledge, no other dedicated
Meme-search systems are available, we compare our system’s
performance to alternative baselines, which include state-of-
the-art methods for image retrieval and commercial image
search engines. Our results show that SimMeme outperforms
the competitors in the Meme-search task. Our query execution
time experiments, performed over the Flickr datasets, demon-
strate the efficiency and scalability of our approach.

A demonstration of our system was recently published [15].
The short paper accompanying the demonstration provides
only a brief, high-level description of the system, whereas the



present paper details our data model and algorithms. For space
constraints, proofs are deferred to a technical report [16].

Paper outline: We present our data model and formally
define the similarity notions in Section 2. In Section 3 we
provide an overview of SimMeme and its components. The
system implementation as well as our experimental study are
described in Section 4. Related work is presented in Section
5 and we conclude in Section 6.

II. PRELIMINARIES

We next describe how the data is modeled, then present the
novel similarity measure employed by SimMeme. Particularly,
we first recall the SimRank similarity measure, the main
building block of our measure, then present our refined variant,
which incorporates semantic knowledge and edge weights in
the similarity assessment.

A. Knowledge Repository

Memes and tags form the basis of our data model, which is
enriched by the visual and textual features of the Memes. We
therefore use a Heterogeneous Information Network (HIN),
a flexible graph-based model that can capture and integrate
various types of data.

Definition II.1. Heterogeneous Information Network. A HIN
is a directed weighted graph G = (V,E,Φ,Ψ,W ), where V
is the set of nodes; E is the set of edges; Φ : V → L and
Ψ : E → L are the node/edge labeling functions and L is the
labels domain, and W : E → R+ is the edge weight function.

For a node v ∈ V , we denote by I(v), O(v) the set of
in and out neighbors of v, resp. An individual in-neighbor
is denoted as Ii(v), for 1 ≤ i ≤ |I(v)|, if I(v) 6= ∅ (and
Oi(v), resp.). The node and edge labeling functions are used
to describe different types of entities and links. Each node has
an associated type: Meme, tag, or a user (if an information
about the user who posted the Memes is available). Meme-Tag,
the basic edge type, connects between a Meme and its tags,
where the weights represent how relevant the tag is as defined
by the annotator of the Meme. (A default weight is associated
in case no such information is available.) Other types of edges
between Meme-nodes represent visual/textual similarities. The
edge weights reflect the corresponding resemblances, and are
derived using designated tools [17], [11]. To avoid explosion
of edges, we include only edges with similarity scores above
a minimal threshold.

To further enrich the tags’ semantics, we incorporate an
ontology in the HIN. An ontology is a labeled graph consisting
of general facts, e.g., that Body-Part “is a-part-of" a Person,
or that Train “is-a” Vehicle. See Figure 1 for example. Indeed,
several ontologies are publicly available (e.g., WordNet [18]1).
We embed the ontology in the HIN by aligning each tag with
its corresponding ontology entity, using an entity-alignment
tool (e.g., [10]). Ontologies typically contain a hierarchical
taxonomy of concepts, e.g., that Baby “is-a” Person and Person
“is-a” Living-Thing.

We will leverage the tags taxonomy relations in the fol-
lowing sections for (i) defining a particular semantic similarity

1In our prototype implementation we used WordNet ontology.

measure (2) speeding up queries execution times (by semantic-
based pruning), and (3) generating the result clusters’ headers.

B. Similarity Notions

As mentioned, our HIN-based model contains various types
of links between Memes and tags, as well as additional
semantic information associated with the tags, as captured by
the embedded ontology. We next devise a similarity measure
between the nodes that effectively considers all information,
and serves as the main building block of our system. As we
explain in the next section, this measure serves to quantify the
degree of relevance of each Meme, given a user query.

Our measure extends SimRank [13], a powerful and pop-
ular similarity measure for general (homogeneous2 and un-
weighted) information networks. SimRank follows the intuitive
assumption that: “two nodes are similar if they are related
to similar nodes". Formally, given two nodes u and v in a
network, their SimRank score is defined recursively as follows.
If u = v then simrank(u, v) = 1, else: simrank(u, v) is
given by the following formula without the red colored parts.

sim(u, v) = (1)
sem(u, v) ·c

Nu,v

|I(u)|∑
i

|I(v)|∑
j

sim(Ii(u), Ij(v))·W (Ii(u), u)·W (Ij(v), v)

where c is a decay factor ∈ (0, 1), Nu,v := |I(u)| · |I(v)|
and sim(·, ·) is the SimRank score of the corresponding
neighboring nodes.

We enrich SimRank by weighting, at each step of the
computation, the neighbors’ link-similarity with the edge
weights and their semantic similarity, which propagates from
the tag-nodes to the Meme-nodes, and allows for a compre-
hensive assessment of the similarity between nodes. Formally,
given a semantic similarity measure, denoted as sem(·, ·), the
highlighted red parts indicate our refinements to SimRank’s
standard formula: (i) an additional semantic factor is added
(sem(u, v)); (ii) the edge weights are taken into consideration
when weighting neighbors similarity. Correspondingly, the
normalization factor is set to:

Nu,v :=

|I(u)|∑
i

|I(v)|∑
j

W (Ii(u), u)·W (Ij(v), v)·sem(Ii(u), Ij(v))

where sim(·, ·) in the refined formula denotes the refined
similarity of the neighbor-pairs. For both measures, if I(u)
or I(v) are equal to ∅, then the scores are defined as 0.

Note that in the refined formula, the semantics of neighbor-
ing node-pairs propagates through the recursive computation,
in particular, allowing the tags’ semantic similarity (as defined
by the incorporated semantic measure) to affect the Memes’
similarity. Namely, the more similar semantic two Memes’
tags are, the more similar the Memes will be according to our
definition of similarity. As we will show in our experimental
evaluation, these refinements are indeed critical, as SimRank
and its other variants (e.g., a weighted variant of SimRank
named SimRank++ [19]) are demonstrated to be significantly
less suited for the Meme search task which requires to account
for the semantics of tags.

2I.e., where all nodes/edges belong to a single type.



Semantic Similarity. Multiple semantic similarity measures
have been studied in the literature [20], [21], [22]. In general,
any semantic similarly function sem(·, ·) can be employed in
our setting, as long as it satisfies the following three intuitive
constraints: For all u, v ∈ V :

1) Symmetry. sem(u, v) = sem(v, u)
2) Maximum self similarity. sem(u, u) = 1
3) Fixed value range. sem(u, v) ∈ (0, 1]

Those requirements are necessary to prove the soundness of
our measure (see [16]). The first two constraints are satisfied by
all semantics similarity measures we are aware of (e.g., [20],
[23]). As for the third constraint, scores can be normalized
into a [0 + ε, 1] range, for a small ε > 0 value.

For the completeness of this paper, we next present a sim-
ple and effective semantic measure that we have integrated in
our prototype implementation (See Section V for a discussion
on alternative measures). Lin [20] is a common Information
Content (IC) based semantic measure that is defined over
concepts’ taxonomy (i.e. tags in our setting). The IC of a
concept is quantified as the negative of its log likelihood,
i.e., the more prevalent a concept is, the lower its IC value.
Intuitively, the similarity between concepts measures the ratio
of the amount of information needed to state their commonality
to the information needed to describe them.

Definition II.2. (Lin) Given two concepts, u and v in a
taxonomy, their Lin semantic similarity score is defined as:

Lin(u, v) =
2 ·maxIC(LCA(u,v))(IC(LCA(u, v)))

IC(u) + IC(v)
where LCA(u, v) denotes the set of the lowest common
ancestors of u and v in the taxonomy.

Note that Lin is traditionally defined only for taxonomy
node pairs. We extend the definition assignment for all other
pairs of nodes, e.g., between Meme-nodes, to the constant
value of 1, indicating that the semantic relations are unknown.

To estimate the IC values of the tags, we adopted the Seco
formula [24], which provides a simple linear-time algorithm.
Theses values are also useful for the presentation of search
results (see Section III-C).

Properties. We can prove that like SimRank, our refined
similarity measure is well defined and its equations can be
solved using an iterative fix point computation (for proof
see [16]). More specifically, the authors of [13] have proved
that SimRank’s iterative form has the following properties:
(1) Monotonicity; (2) Existence: the solution always exists
and converges to a fix-point, and (3) Uniqueness: for ev-
ery choice of the decay factor c ∈ (0, 1), the solution is
unique. A difference from Simrank is that in our case, the
uniqueness property holds only for c values s.t: 0 < c <
min(argminNu,v (Nu,v), 1). Yet, our experiments show that
for real-life data, the upper bound is high enough to comfort-
ably accommodate typical c values chosen for SimRank (e.g.,
0.6, as used in [14]).

As for SimRank [13], the iterative procedure for computing
similarity scores is expensive. Towards this end, we devise a
probabilistic framework for computing approximated similarity
scores, which allows for a direct adaptation of SimRank’s
existing optimizations (see Section III-B).

Node IC value
Entity 0.001

Living Thing, Abstract Entity 0.01
Vehicle,Tableware, Artifact 0.03

Person, Body Part, 0.05
Baby 0.08

Mouth, Knowledge 0.29
Train, Airplane, Spoon 0.4

Meme A, Meme B, Meme C 1.0
TABLE I: IC values for Example I.1.

To complete the picture, we next provide the similarity
computation of Example I.1 from the Introduction, computing
the three Meme-nodes similarity scores according to our
refined measure, using Lin as the integrated semantic measure.
This example demonstrates the flexible nature of our measure.

Example II.3. Consider again the simple network depicted
in Figure 1. Using the nodes’ IC values computed for our
experimental study (see Section IV-A) as listed in Table I,
we compute the similarity scores according to our refined
measure. We set c = 0.63 and executed 4 iterations of the
iterative procedure. As explained in Example I.1, every Meme-
pair is either semantically, visually or textually similar, and
thus the obtained similarity scores are rather close:
sim(A,B) ≈ 0.058, sim(A,C) ≈ 0.058, sim(B,C) ≈ 0.057.
However, if we “ignore", e.g., the textual similarity edges by
setting the corresponding edge weights to 0, we get that:
sim(A,B) ≈ 0.064, sim(B,C) ≈ 0.063, sim(A,C) ≈ 0.057.
On the other hand, we note that according to SimRank (using
the same parameters), the removal of the textual/visual/Meme-
tag edges does not change the Meme-pairs ranking. I.e., in all
cases: sim(A,C) ≥ sim(A,B) ≥ sim(B,C).

This simple example demonstrates that changing the edge
weights can affect the similarity scores and hence the relevance
ranking of the Memes. Indeed, as we explain in the following
section, based on this observation, SimMeme enables users to
specify their intent in Memes search by setting custom weights
and thereby influence the results ranking.

III. SYSTEM OVERVIEW

Next, we present SimMeme workflow. We first explain
how a user query is formulated, then describe its execution
process. In particular, we focus on the two main optimizations
SimMeme employs to achieve an efficient, scalable eval-
uation: semantic-based pruning and approximated similarity
computation. Last, we briefly discuss the results presentation.

A. Query Formulation

SimMeme supports two types of search queries: (i)
keyword-based queries, where the user specifics a set of search
keywords, and (ii) image-based queries, where Meme/image
is provided. SimMeme also allows users to provide both
keywords and an image, and we refer to such combined queries
as image-based queries as well. To ease the presentation, we
assume in what follows that the image/Meme in a given image-
base query exists in our repository. To support queries in which
the user points to a new image/Meme, given the query, the

3A value that ensures the uniqueness of the similarity scores in this example.



(a) Results generated with visual factor set to 0.2. (b) Results generated with visual factor set to 1.

Fig. 2: SimMeme UI: A Meme-search query with varying user-defined parameters.

system computes the relevant visual and textual edge weights,
a process that can be efficiently done using solutions such as
[25] for indexing.

SimMeme UI allows users to tune the importance of vi-
sual/textual features, and to set custom weights to the specified
keywords (indicating the importance level of each keyword).
The given parameters affect the similarity scores and hence
the relevance ranking of the Memes. For example, Figure 2
depicts the results obtained for an image-based query, where
the user provided an example Meme as the input and had set
varying values for the visual factor. Particularly, in the query
that resulted in the answer depicted in Figure 2a, the user had
set a low visual factor (of 0.2), and hence the system displays
semantically and textually similar Memes, while in Figure 2b,
the user had set the visual factor to its maximal value (of 1),
and hence the system ranks the visually similar Memes higher.

We model a user query as a (temporary) Meme-node,
linking it to the relevant tag-nodes as provided in the query’s
keywords, with the corresponding custom weights (in case the
user did not specify weights, we use default values). Given
an image-based query, we simply consider the corresponding
(image/Meme) node as the query node. Last, we update the
graph edge weights according to the user’s custom parameters.
To illustrate, consider the following example demonstrating
this process.

Example III.1. Given the user query whose results are pre-
sented in Figure 2a, where the user pointed to an existing
Meme and had set the visual similarity factor to 0.2, we
consider this Meme-node as the query node, and multiply
the weights of all edges in the graph with the label “vi-
sual_similarity" by a factor of 0.2. As another example, for the
keyword-query Baby and Food, assuming no custom keywords’
weights were provided, the system generates a temporary query
node, connecting it to the relevant tags with the default edge
weight value of 1.

B. Query Execution and Optimizations

Given a query node, SimMeme retrieves its top-k most
similar Meme-nodes, as determined by our similarity measure.
To do this efficiently, it employs the following optimizations:

1) A pruning method that allows to restrict attention to a
subset of potentially relevant Memes.

2) A probabilistic framework that allows for an efficient
similarity estimation.

We next present more details about these techniques, and
conclude this section with a brief discussion on additional
possible execution times optimizations.

Pruning. We next describe the key principles of our method
that constructs the initial set of candidate Memes to appear in
the results set of a given user query. Consider again Equation 1.
Given a query-node, a “promising" Meme-node to obtain a
high similarity score is a one that: (i) its associated tags
are semantically related to the query keywords, or (ii) is
visually/textually similar to the query-node. A possible (but
rather inefficient) pruning approach would be to consider
each Meme-node separately, and discard those who have no
semantically related tags (according to their semantic similarity
scores), nor are visually/textually similar to the query node.

To speed up the computation and avoid considering each
Meme-node separately, we leverage the following two obser-
vations. First, note that visually/textually related Meme-nodes
are (by construction) already connected to the query-node, and
can thus be identified immediately. Second, to identify Memes
with semantically related tags, one can exploit the semantic
hierarchy induced by the taxonomy. More specifically, we
traverse the tags taxonomy in a top down manner, computing
the tags semantic similarity scores to the query keywords.
If a certain tag is semantically related to one of the query
keywords, then its descendants in the taxonomy may be
semantically related to this keyword as well. Consequently,
all Meme-nodes connected to this tag-node or to one of its
tag-node descendants, are added to the output set and we halt.
Otherwise, we continue to explore the current tag direct tag-
node descendants according to the taxonomy.

While not all selected tags, and hence their corresponding
Meme-nodes, are bounded to be highly similar to the query’s
keywords (resp. query-node4), our experiments indicate that
this method, nevertheless, has a significant affect on execution

4Unless the chosen semantic measure is monotone w.r.t. the partial order
induced by the taxonomy



times. Note that the correctness of this procedure is always
guaranteed, since all tags that were excluded in this process
are those that have been explicitly checked and were found not
to be semantically related. To further improve performances,
SimMeme maintains a cache mechanism that maps between
keywords mentioned in previous queries and their computed
set of semantically-related tags.

Similarity Estimation. Given a set of candidate Meme-nodes,
we next devise a probabilistic framework that efficiently esti-
mates the similarity scores between each candidate and the
query-node. This framework is based on previous develop-
ments for SimRank. We start by recalling SimRank’s basic
approximation framework, then show that a naïve solution
of using this framework for our refined measure leads to a
quadratic increase in the sample size. To overcome this, we
employ Importance Sampling. Finally, we present our refined
framework. For space constraints, we provide here only a brief
overview of this framework. Full details are provided in [16].

Our probabilistic framework stems from an intuitive con-
nection between SimRank to a “random surfer" model (es-
tablished in [13]): The SimRank score between a pair of
nodes measures how soon two random surfers are expected
to meet, if they start at the two nodes and randomly walk
on the graph backwards. Formally, given two random walks
t1 = 〈u1 = u, ..., uk〉 and t2 = 〈v1 = v, ..., vk〉, from the
nodes u and v resp. that intersect at the same node after exactly
τ steps, it can be proved that simrank(u, v) = E[cτ ].

Utilizing the equality above, a Monte-Carlo (MC) frame-
work that efficiently approximates SimRank scores was pro-
posed in [26]. This framework first precomputes a set of
reversed random walks from each node s.t. (i) each set has
exactly n walks, and (ii) each walk is truncated at step t. Then,
given two nodes u and v, the method estimates their SimRank
score as:

simrank(u, v) ≈ 1

n

nw∑
l=1

cτl

where τl denotes the number of steps prior to their first
intersection and ∞ otherwise.

However, this framework can not be directly applied for our
refined measure, as it assumes that the random surfers choose
the next step uniformly at random and the choices of the surfers
are independent. Contrarily, in our setting, the surfers must
also consider the edge weights and the semantic similarity,
and hence the two surfers choices are dependent. To facilitate
efficient similarity computation, we first define a random walk
model adequate for our setting, referred as the Semantic-Aware
Random Walk (SARW), then describe how the approximated
computation is performed using such walks.

Given two random walks t1 and t2 as defined above, let
t denote the coupled random walk of t1 and t2, where t =
〈(u1, v1), ..(uk, vK)〉, and let τ(t) denote the prefix of t until
the first meeting point of t1 and t2. Its probability, denoted as
P [t], is defined as the product of probabilities in each step.
We define the semantic-aware probability distribution to be
the probability that two random surfers in the current nodes

u, v will next move to their neighbors x, y as follows:

P [(u, v)→(x, y)] =
W ((u, v), (x, y)) · sem(x, y)

|O((u,c))|∑
k=1

W ((u, v), Ok(u, v))·sem(Ok(u, v))

Let t = 〈w1, ..., wk〉 be a coupled random walk (i.e., wi is
a pair of nodes), the probability P [t] of traveling within it is

then defined as: P [t] =
|t|−1∏
i=1

P [wi → wi+1].

Let t : (u, v) → (x, y) denote a coupled walk from the
nodes u, v to the nodes x, y resp., l(t) denotes its length, and:
T = {τ(t) : (u, v) → (x, x)} is the set of all coupled walks
starting from u and v that intersect after a finite number of
steps. We can prove that:∑

t∈T
sem(u, v) · P [t] · cl(t) = sim(u, v)

where P is the semantic-aware distribution. Since such walks
cannot be sampled independently (as it involves the semantic
similarity of the next pair to be chosen), properly approximat-
ing similarity scores would require a much larger sample size
of n · |V |2 walks, instead of n · |V | as in the simple uniform
setting of SimRank. To overcome this, we employ Importance
Sampling, a general technique for estimating properties of a
particular distribution, while only having samples generated
from another distribution.

For a single node-pair u, v ∈ V , we wish to estimate
the expected value of the function sem(u, v) · cl(x), where
x is a coupled random walk drawn from the semantic-aware
distribution P , namely:

sim(u, v) = EP [sem(u, v) · cl(x)] =

sem(u, v) · EP [cl(x)] = sem(u, v) ·
∑

P (x) · cl(x)

Given n coupled random walks x1, ..., xn drawn from P , an
empirical estimator of EP [cl(x)] is:

EP [cl(x)] ≈ 1

n

n∑
i=1

cl(xi)

We derive that:

EP [cl(x)] =
∑ P (x) ·Q(x) · cl(x)

Q(x)
≈ 1

n

n∑
i=1

cl(xi)
P (xi)

Q(xi)

where Q is a different distribution (with the same support
as the distribution P ). That is, we can obtain an unbiased
estimator of the expected value of the function cl(x) under the
distribution P , using only samples drawn from Q.

We can show that the expected value of the new estimator
is indeed equal to the desired one, i.e., for every u, v:

sem(u, v)·EQ[
P (t) · cl(t)

Q(t)
] = sem(u, v)·EP [cl(t)] = sim(u, v)

where t is a coupled random walk starting from u and v. Note
that the latter inequality holds for any choice of the distribution
Q. In our setting, we set Q to be the uniform distribution,
i.e., we sample separated random walks with the underlying
uniform distribution, to enable sampling the random walks at
pre-processing time (instead of at query-time). That is, as the
graph weights may changed according to user custom weights,
the uniform distribution ignores the edge weights and hence
allows us to sample the random walks without the need to
re-sample them according to the updated edge weights.



Using our proposed framework, we can prove that the aver-
age time required to answer a single-pair similarity estimation
is O(n·d2 ·t), where n is the number of sampled random walks
of length t from each node, and d is the average in-degree in
the graph. For a detailed complexity and error analysis, we
defer the interested readers to [16].

Supporting queries with user-defined weights: As in
the original SimRank’s MC framework, the (separated) random
walks are sampled at pre-processing time. Given a query-node,
we first sample a set of random walks starting from it, then
compute the similarity scores between this query-node and
all candidate Meme-nodes. Recall that the user may further
provide custom visual/textual factors requiring to update the
edge weights, i.e., to multiply the relevant edge weights
by the corresponding factors. Since the (separated) random
walks are sampled according to the uniform distribution that
ignores the edge weights, there is no need to sample again
the walks after updating the weights. However, as the weights
do affect the coupled random walks’ probabilities according
to the semantic-aware distribution P , we dynamically update
the edge weights while computing these probabilities during
query-time.

Further optimizations We conclude with three remarks re-
garding further running times optimizations employed by Sim-
Meme. First, to allow an efficient query evaluation, we employ
a preprocessing which consists of: (1) Sampling the random-
walks from all Meme-nodes; (2) Precomputing the IC values,
and (3) The precomputation required for the incorporated
semantic measure (e.g., processing the taxonomy using [27],
to enable constant-time LCA computations, allowing constant-
time Lin computations).

Second, a large portion of SimRank’s optimizations are
based on its MC framework (e.g., [28]) and can be adapted for
our measure as well, using the adjusted MC framework. For
example, in [14], the authors provided a new interpretation of
SimRank incorporating

√
c-random-walks, which ensures that

the expected length of walks is short. This interpretation can be
immediately applied for our setting as well using

√
c-SARWs.

Last, we note that SimMeme is a highly parallelizable
system, as the similarity scores are independent of one another
and can be computed simultaneously. Hence, a natural speedup
is achieved by distributing the similarity computations over
multiple cores.

C. Results Presentation

Once the query is processed, SimMeme displays the top-k
retrieved Memes in semantically related clusters. To illustrate,
consider again Figure 2, depicting the results for an image-
based query. In Figure 2a, the upper block contains only
Memes semantically related to the tag Kids, while the lower
block contains ones that are all related to the tag Animals.
Furthermore, the system generates a meaningful header for
each such cluster, namely, a set of tags describing it. Going
a step further, the user may click on a result Meme to view
an explanation about its retrieval process. See Figure 3 for
example. This explanation provides an intuition about the
relevant parts of the HIN that led to the selection.

To generate the clusters, our prototype engine uses K-
Means (an effective clustering method), taking the proposed

Fig. 3: An explanation popup.
similarity measure as an input. We note that several other al-
gorithms for image results summarization have been proposed
(e.g., [29], [30]) and can be applied here as well. We next
devise a simple method for generating the cluster headers, and
shortly describe how the explanations are generated.

Generating a Cluster Header. A cluster header in our system
comprises of a set of concepts (tags or their higher level
abstractions in the taxonomy), which describe the Memes
within it. To generate the header, we use a simple procedure
that utilizes the tags taxonomy and their IC values. Intuitively,
our algorithm works as follows: for each Meme, we consider
a set of tags consisting of its tags and all their taxonomical
ancestors. From these sets, we identify the set of concepts
that appear with frequency above a certain threshold, and
select the most specific ones (i.e. frequent concepts that are
not subsumed, according to the taxonomy, by other frequent
concepts). Finally, we choose the ones having the highest IC
values as the header5. For example, consider the upper cluster
in Figure 2a. The tag Name was selected as it is associated with
all Memes in this cluster and has a high IC value. Additionally,
as all Memes in this cluster posses either the tag Baby or the
tag Kid and according to the taxonomy Baby “is-a” Kid, the
tag Kid gets a high frequency as well. Since its IC value is
high, it also appears in the title.

Generating explanations. SimMeme provides an explanation
for each retrieved Meme, highlighting the reasons for its
selection. This feature assists the user to understand how the
Meme’s properties (e.g., tags, visual appearance) affected its
ranking. The explanation consists of: (1) the Meme’s tags; (2)
the visual/textual similarity scores of the Meme, and (3) the
semantic relations among the keywords and tags, as induced by
the ontology. For example, Figure 3 displays an explanation for
a resulted Meme. Although the query Meme and the result one
are not visually similar, they are textually similar and their tags
are semantically related: Baby “is-a” Kid, Mom “is-a” Parent,
and they share the tag Name.

IV. EXPERIMENTAL STUDY

We conducted an empirical evaluation of SimMeme,
studying three main aspects of our work:

1) Meme-retrieval quality. We assessed the adequacy of
Memes returned by SimMeme to real-life user queries by

5In our implementation we have set the threshold so that 2 − 5 tags are
selected for each header.



conducting a user study. We compared our Meme search-
engine with various baselines, including state-of-the-
art approaches for image-retrieval, popular commercial
image-search engines, and alternative similarity measures.

2) Applicability of our Search Interface. We asked users
to rate their satisfaction from the system’s search UI and
in particular its novel features: customized search, results
clustering, and explanations.

3) Execution times. We examined the performance of Sim-
Meme as a factor of several parameters, and the ability
of the system to scale.

We start by describing the experimental setup, then provide
details on each of these three experiment sets.

A. Experimental Setup

Next, we describe our prototype implementation and its
parameter settings, then present the datasets and baselines used
throughout the experimental study.

Implementation and Settings: We implemented a pro-
totype of SimMeme in Python 2.7, using the NetworkX
library (https://networkx.github.io/) for graph processing and
React (https://reactjs.org/) for the system’s UI. We used
SSIM [31] to calculate the visual similarity between Memes,
and the noun sub-part of the lexical base WordNet [18] (82K
English nouns), as the tags ontology. We used the following
system parameters: The decay factor (c) of our similarity
measure was set to 0.6 (this is also a typical choice for
SimRank [14]), and for the probabilistic framework, a set
of 50 random walks of length 15 was sampled from each
Meme-node. According to our experiments, this choice of the
parameters allows for fast execution times, while maintaining
negligible error rate. All experiments were conducted on a 24
cores (2.1GHz) Linux server with 96GB of memory.

Datasets: As opposed to standard image retrieval where
several benchmarks and ground-truth datasets exist, there are
no such ones for the Meme-retrieval task. Therefore, we
constructed a tagged-Meme repository6 as follows. (Due to
the page limitation, we provide here only a brief explanation
on how this dataset was build.) First, we gathered 10K Memes
via web crawling, then obtained tags via crowdsourcing: For
each Meme, we asked 5 CrowdFlower workers (https://www.
crowdflower.com/) to describe it via 3−8 English nouns, then
selected only tags provided by at least 3 different workers.
The weights on the Meme-tag edges were set according to the
proportion of workers that chose a specific tag to describe
a Meme. To test the system scalability, we used the stan-
dard Flickr dataset [32], a commonly used dataset in image-
retrieval, comprising of over 2.3M images, each associated
with 5− 8 users tags.

Baseline algorithms: We compared our system to mul-
tiple baselines from three main categories:

1. General purpose image-retrieval algorithms. We exam-
ined several CBIR, TagIR and Hybrid algorithms: (1) CNN-
CBIR [4], a content-based approach that uses a convolutional
neural network to generate high-level descriptions of the
images. (2) Vis-W2V [5], a text-based algorithm that employs

6As we explain in Section VI, we are currently working on devising a
benchmark for Meme retrieval, making this dataset public available.

a word embedding technique based on Word2Vec [33]. As
for hybrid based algorithms, we tested: (3) ImageNet distance
[7], an image-distance function that considers both the visual
features and a (WordNet based) taxonomy of tags; and (4)
DeepWalk [11], a deep learning based algorithm that learns
a unified vector representation for both tags and Memes (See
Section V for more details). We considered two implementa-
tions of DeepWalk, one that uses only the Memes-tags graph
(as in the original paper [11]) and another that considers our
full aligned HIN graph, ontology included. As the latter shows
better performance, we present in this section only its results.

2. SimMeme with alternative similarity measures. To
assess the utility of our proposed similarity measure, we
formed three baselines by replacing it with existing measures
commonly used for HINs, or a different aggregation of the
obtained Lin and SimRank scores. (5) PathSim [34], an alter-
native random-walk based similarity measure. This measure
is label-aware, and all random walks are sampled according
to a predefined meta-path scheme. We used meta-paths (up to
length 10) of the form Meme-Meme or Meme-Tag*-Meme (See
[34]). (6) and (7) Multiplication and Average, a simple product
(resp. average) of the obtained Lin and SimRank scores, as
opposed to our formula that interweaves the two throughout
the recursive computation.

3. Commercial search engines. Last, we further considered
two popular commercial search engines: (5) Google-Image
(https://images.google.com/) and (6) Bing-Image (https://www.
bing.com/images). Since they do not reveal implementation
details, we used their online versions, which use larger datasets
and contain more image meta-data (e.g., the text surrounding
Memes posted on web pages). Hence, they serve as repre-
sentative examples for TBIR approaches. To allow for a fair
comparison between all baselines, we extended our dataset to
include all Memes retrieved by either Google or Bing (up to
rank 30 of the results-set order) that were not already present.
For the formulation of image-based queries, we used their UIs
that allow to search by both image and keywords.

Additional baselines were considered yet omitted from
presentation due to their inferior performance. These include:
embedding-based algorithms ([35], [36], alternative similarity
measures ([12], [13]), and in particular, additional weighted
variant of SimRank, SimRank++ [19]. Furthermore, we con-
sidered several alternative semantic measures ([22], [23]).

B. Meme-Retrieval Quality Evaluation

Experimental setup. To assess the results quality of
SimMeme and the competitors, we conducted two experiment
sets: First, we recruited 20 student volunteers7 and asked them
each to compose one keyword-based and one image-based
queries (total of 40 queries), then asked the participants to
asses the quality of results obtained by each baseline. Second,
we randomly selected 30 keyword-based and 30 image-based
queries, and performed a crowd-based evaluation to measure
the relevance of the results to the corresponding queries, using
CrowdFlower workers. To generate random keyword-based
queries, we sampled tags uniformly at random, and to generate
random image-based queries we randomly selected an existing
Meme as the query node. In total, we report the results quality
of 100 Meme retrieval queries.

715 out of the 20 students are not CS students.

https://networkx.github.io/
https://reactjs.org/
https://www.crowdflower.com/
https://www.crowdflower.com/
https://images.google.com/
https://www.bing.com/images
https://www.bing.com/images


For a fair comparison with the competitors, the queries
did not employ any of the novel features that are available
only in SimMeme, e.g. custom weights. The queries were
then mapped to the required input representation of each
baseline: a vector representation for CNN-CBIR, Vis-W2V and
DeepWalk, a query node for ImageNet and Pathsim, and a
set of search keywords and possibly an image for Google and
Bing. For each query we considered the top 15 results obtained
by each of the competitor algorithm. To measure the relevance
of the result sets to the corresponding queries, each result
Meme was presented to the student volunteer who wrote the
query, and to 5 CrowdFlower workers, along with the search
query. The users (volunteers or workers) were asked to rate
each result Meme relevance on a scale of 1−3, where 3 (resp.
1) indicates relevance (irrelevance). We then took the average
(volunteers or workers) rating as the Meme’s relevance score.

Last, to obtain an aggregated score for each results set, we
use two common information retrieval evaluation measures:
Normalized Discounted Cumulative Gain (NDCG) with a
cutoff at 15, and Precision at 15 (P@15). When computing
precision, we assumed that a Meme was relevant if its average
score was ≥ 2 (similar trends were demonstrated for an av-
erage scores of 3). Computing the NDCG requires comparing
the obtained ranking of each baseline with a perfect ranking
algorithm. Here, the perfect ranking used was the one that
ranks only relevant results (i.e. score of 3) in every position.

Result Analysis. Table II depicts the results obtained of all
baselines, according to the workers and volunteers. Note that
some of the baselines (i.e., CNN-CBIR, ImageNet, Vis-W2V)
do not support keyword-based queries, therefore we considered
their results only for image-based queries.

The results demonstrate the advantage of our method,
achieving the highest average P@15 and NDGC scores, both
by the students volunteers and by the crowd workers. We next
provide a detailed comparison to all baseline algorithms.

General purpose image-retrieval. First, observe that Vis-
W2V, a TagIR approach, returns more adequate results than
CNN-CBIR, a CBIR approach. This result stems from the well-
known “semantic-gap" problem affecting CBIR algorithms,
and in particular, when retrieving semantically-rich images
such as Memes, which often share the same background
image. However, the hybrid-based baseline (e.g., DeepWalk,
ImageNet) outperform the latter competitors. The results show
that ImageNet is less suited for Meme-retrieval than DeepWalk
and SimMeme, as it only considers visually similar Memes,
ranked according to their semantic relations. As common for
Memes, even visually dissimilar Memes may be semantically
or textually related to a user query (see Figure 1). Among
all baselines, DeepWalk presented the best performance, and
was only surpassed by SimMeme(the p < 0.05 in a sign-test
between DeepWalk and SimMeme).

We note that, besides the superior accuracy of SimMeme,
another important advantage of our approach over DeepWalk
is the flexibility that users have in their search queries. To
demonstrate this, we reevaluated all image-based queries, this
time adding a requirement to retrieve only visually similar
Memes. In SimMeme, this is simply done by setting the visual
factor to its maximum value, where in DeepWalk this is not
possible unless we re-train the algorithm (originally, the users

did not specify the weights and hence SimMeme used its
default parameters). Next, we evaluated the queries again and
asked the crowd workers to rank the relevance of the new
results, while taking into account the additional request of
retrieving only visually similar Memes. The average P@15
and NDGC scores achieved by DeepWalk dropped to 0.66 and
0.62, compared to 0.89 and 0.82 for SimMeme. This stems
from the fact that the feature vectors used in DeepWalk are
learned at preprocessing time, thus the user request, containing
customized parameters, is disregarded.

SimMeme with alternative similarity measures. When we
replaced our proposed measure by PathSim, Multiplication
and the Average baselines, the NDCG and P@K scores de-
creased. We note that these baselines were use as alternative
implementations to our measure, and hence the pruning phase
was still used for initial filtering. These results show that our
refined similarity measure better integrates visual and semantic
features, in the context of Memes search.

Commercial search engines. Interestingly, SimMeme also
outperformed Google and Bing in the Meme retrieval task.
While their image repositories are larger than ours and they
consider additional textual meta data about the Memes, they
apparently less suited for Meme search. It worth mentioning
that nowadays, most users use those platforms for the Meme-
retrieval task, as no dedicated system which allows flexible,
custom Meme search is available.

Last, recall that our prototype engine employs a fairly sim-
ple semantic similarity measure - Lin. To assess the adequacy
of this choice, we replaced Lin by the node-similarity scores
derived from the richer DeepWalk measure. Interestingly, this
did improve the quality of results, indicating that Lin is indeed
an adequate choice that is able to successfully capture semantic
relations among the tags.

C. UI Evaluation

To evaluate the applicability of the proposed search inter-
face features, we further asked the student volunteers (who
wrote the queries) to fill a short survey for rating their satis-
faction from the following features: (i) the customized search;
(ii) the clustered results and their headers, and (iii) the result
explanations. The participants were asked to rate each feature,
on a scale from 1 to 5 (most satisfactory), regarding three
different aspects: understandability, relevance and usability.

The results of this survey are summarized in Table III,
where each cell contains the averaged score of all participants.
All rating scores were between 3 to 5, where the customized
search feature received the highest score on all accounts. In
particular, all participants considered this feature a “vital"
for Meme search (i.e. 5 on the usability scale), as it allows
users to easily specify their intent. The explanation feature
received a high score of 4.6 for its usability, yet a lower score
of 4.0 for its intelligibility. Particularly, 3 of the participants
mentioned that a natural language explanation would be more
understandable. As the implementation of such feature involves
natural language processing which is beyond the scope of this
work, we leave this for future work.

D. Performance Evaluation

To demonstrate the ability of SimMeme to scale, we
conducted the following experiments on the larger Flickr



Baseline Approach Avg. P@15 (volunteers) Avg. NDCG (volunteers) Avg. P@15 (workers) Avg. NDCG (workers)
SiMeme Hybrid 0.93 0.84 0.92 0.83

DeepWalk Hybrid 0.90 0.81 0.88 0.80
ImageNet Hybrid 0.73 0.66 0.74 0.65
Vis-W2V TagIR 0.70 0.72 0.74 0.68

CNN-CBIR CBIR 0.65 0.64 0.67 0.64
Google TBIR 0.77 0.75 0.76 0.76
Bing TBIR 0.64 0.62 0.63 0.63

PathSim Hybrid 0.81 0.78 0.83 0.76
Average Hybrid 0.76 0.68 0.77 0.66

Multiplication Hybrid 0.70 0.68 0.71 0.67
TABLE II: Users (volunteers or workers) relevance assessment for Meme retrieval queries.
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Fig. 4: Average running times of 1K randomly selected image-based queries on the Flicker dataset.

Feature Understandability Relevance Usability
Clusters

and headers. 4.2 4.3 4.5

Advanced
search parameters. 4.5 4.1 5

Results
explanations. 4.0 4.3 4.6

TABLE III: Users averaged ranking for SimMeme UI features.

dataset. Here again, we aligned between the images’ tags and
WordNet entities, obtaining an HIN with over 2.3M image
nodes (there are no Meme-node in this dataset). We examine
the queries execution times w.r.t. to the following parameters:
the size of the repository, the number of displayed results, and
the number of search keywords. We next report the system
preprocessing time, then analyze the query execution time.

Preprocessing: Recall that the preprocessing phase
consists of three parts: sampling the random walks from each
image node, computing the IC values of all tags, and process-
ing required for constant-time semantic similarity computa-
tions (as described in Section III-B). The overall time required
to sample the random walks was 2.5 minutes; computing the
IC values required additional 2 minutes, and the processing of
WordNet taxonomy took approximately 5 minutes. We mote
that this is a one-time effort performed during system setup
(or periodically, to account for added data).

Query Execution times: We report the running time
of SimMeme w.r.t. its main components: pruning, similarity
evaluation and results presentation. This partition provides an
intuition on the ability of SimMeme to scale, and a clear
image of its computational bottleneck. To complete the picture,
we also report the running time of SimMeme as a whole.

Recall that we cache the sets of relevant tags for search
keywords that were already computed. This caching mecha-
nism allows avoiding the computation of these sets at run-
time. In this experiment we distinguish between newly arrived
keywords, i.e., keywords that are not cached yet, and repeated
keywords, where the query contains keywords that were all
previously computed and cached.

For this experiment we randomly picked 1K image-nodes
for image-based queries, containing both keywords and an
image. We measured the execution time of a query as a
function of the number of its tags (i.e. the query keywords).
Figure 4 depicts the average running times of those queries.
Particularly, Figure 4a depicts the average running times of
the pruning phase, with and without using caching. Observe
that while all queries were processed in less than 0.2 seconds,
a further improvement of up to 50% can be achieved by
precomputing and caching common search keywords.

Next, we consider the time required to evaluate the similar-
ity scores between the candidate image nodes and the query
node, as described in Section III-B. We start by examining
various sizes of the image repository, however, we have noticed
that the repository size has only a marginal affect on the
execution times. The reason for that stems from the fact that
the similarity scores are only computed for nodes that passed
the pruning. Therefore, we report the running times as a
factor of the number of candidate nodes, while the repository
size is fixed (containing all images in Flicker). The results
are depicted in Figure 4b. We report that on average, the
percentage of image-nodes passing the pruning is 5%, and
hence, on average, this phase takes less than 0.3 seconds.
We note that the number of keywords in the queries only had



a negligible affect on running times, as the same number of
random walks are considered for each image-node.

In the next phase, the Memes clusters are generated as
well as their corresponding headers. In this experiment, we
alter the number of the displayed results, to view its affect on
the execution times. The results are depicted in Figure 4c. Not
surprisingly, this phase is the fastest one (on average, it took
0.145 seconds) and the execution times grow linearly with the
number of displayed results.

Last, we evaluate the overall execution time of the queries
mentioned above twice: before the system cached the relevant
keywords, and after. According to our experiments, the average
execution time of a single user query is 0.47 and 0.75 seconds,
for cached and new keyword queries, resp., and the maximal
time measured is 0.9 and 1.1 seconds, to cached and new
keyword queries, resp.

Concluding, the most “expensive" operation in the evalu-
ation process of a user query is the similarity computation.
However, as our experiments indicate, even this phase takes
on average 0.65 seconds, and thus allows for an interactive
response time. Moreover, since the similarity scores can be
computed in parallel, a further speedup can be easily achieved
by distributing the computation over multiple cores.

V. RELATED WORK

Internet Memes have become a widespread cultural phe-
nomena [1] and more recently, have even attracted attention
from the research community [2], [3]. Despite a growing need
for users to quickly find the right Meme for a given search
query, to the extent of our knowledge, there is no dedicated
system for this task. General image retrieval, on the other hand,
has received tremendous attention in roughly three main lines
of works: (i) Content Based Image Retrieval (CBIR) [37], [4];
(ii) Text Based or Tag based Image Retrieval (TBIR/TagIR)
[5], [6], and (iii) Hybrid approaches [7]. As demonstrated,
these approaches are not well suited for the Meme retrieval
task: CBIR techniques are focus on analyzing low-level vi-
sual features (e.g., color histograms, shapes) that are not
easily correlated with high-level semantic concepts prevalent in
Memes such as irony and emotions. TBIR frameworks, which
associate meta-data (e.g., geo-location) to images, employ text
retrieval techniques (e.g., TF/IDF, N-grams), and are highly
useful when an elaborate text associated with the image is
available. However, this is not a classic case for Memes, as
they are typically propagated via image-sharing platforms (e.g.,
Instagram, Facebook), and thus are associated merely with a
handful of tags. More recently, to address this issue, the TagIR
approach has been proposed [6], [8]. This approach is mainly
based on the relevance scores between the query keywords and
the image tags. However, since the tags are often ambiguous
and incomplete, additional aspects such as the Meme’s caption
and background-image are needed to be considered as well.
Moreover, it does not support Meme retrieval based on visual
features. Our approach follows the line of hybrid solutions [7],
[11], [35], [36], which can account for cases where visually
similar images may be semantically dissimilar and vice versa.
However, as demonstrated, they do not support a tunable
assessment of the similarity, allowing a flexible search.

Among the variety of works, our approach is most similar
to the following two works. ImageNet [7] (which we have

examined in our experiments as a baseline) considers both
visual features of the images and a semantic taxonomy of tags.
To determine the similarity of two images, the authors of [7]
suggested to first retrieve their k-nearest neighbors in terms
of visual distance, then return the aggregated semantic dis-
tance of the neighbors’ categories. In contrast, SimMeme (a)
considers the entire structure of the network, (b) interweaves
the visual and semantic similarity scores, instead of using
them separately, and (c) is also applicable for keyword-based
queries. The problem of balancing between tags and visual
features was also considered in [12]. The proposed system
employs a random-walk based algorithm for image retrieval.
However, they use the “classic" SimRank-style random walk
definition, as opposed to our Semantic Aware Random Walks
notation that also accounts for the IC values and the conceptual
commonality of tags, as induced by the taxonomy. Here again,
our experiments show that our refined variant of random-walks
yields better results for Meme search.

Another related research domain is cross-modal retrieval,
that enables the retrieval of items with multiple modalities
(e.g., videos, images, and news articles that describe the same
concept or event). Most works in this field are using represen-
tation learning techniques such as embedding and learning to
rank, to obtain a unified vector-representation for the different
data types [38], [8]. While it is possible to use such an
approach for Memes retrieval (e.g., DeepWalk [11]), according
to our experiments, SimMeme provides more accurate results.
Also, it is less flexible in terms of user experience - setting the
importance of visual features for a search query is not possible,
and its results are difficult to explain (since the similarity is
calculated over a machine-generated vector space).

Our similarity measure extends SimRank [13], a popular
and common similarity measure for information networks, to
better handle heterogeneous, semantically-rich networks. As
SimRank was originally defined for unweighted networks,
SimRank++, a variant that also considers edge weights was
presented in [19]. In this work the authors consider graphs that
model sponsored searches, and account for the evidence sup-
porting query similarity. Since no user feedback was available
in our setting (e.g., clicks), when examining SimRank++ in our
experiments we considered only the weights, which amount
to a restricted variant of our measure, ignoring semantics.
Moreover, scalability issues for SimRank++ were not studied,
as the computations in [19] were mainly performed offline.
One of the contributions of the current work is an efficient
computation scheme, applicable also for this variant.

Several alternative similarity measures for HIN were pre-
sented in previous work [39], [34]. In particular, PathSim [34],
a semantic aware measure, was considered, yet, as shown,
made limited use of the tags’ semantics. SimMeme prototype
employs Lin [20], an effective IC-based similarity measure,
which, as shown, can be replaced. Much effort was devoted
to quantify semantic similarity, especially with the increasing
interest in the Semantic Web. Examples include: IC-based
measures [22], [23] and feature-based ones [21]. The former
regards a domain ontology, while the latter usually considers
additional external sources (e.g., textual corpus [21]).

The HIN repository used in our prototype implementation
comprises of Memes, tags, visual similarity edges and the
WordNet ontology. Nonetheless, it can be enriched with addi-



tional machine-generated tags[40], sentiment proximity (tex-
tual or visual) [9], and high-level semantic entities, extracted
from the images [4].

VI. CONCLUSION AND FUTURE WORK

In this work we presented SimMeme, a Meme-dedicated
search engine, which provides a flexible interface enabling
users to specify their search criteria. SimMeme employs a
novel similarity measure, which interweaves visual, textual
and semantic information, and allows for a comprehensive
and efficient assessment of Memes similarity. To evaluate the
adequacy of the results obtained, we compared our system to
baselines which include state-of-the-art approaches for stan-
dard image retrieval. Our experiments indicate that SimMeme
returns more adequate results to Memes search queries than the
competitors, and demonstrated the efficiency of our algorithms.

As Memes typically propagate thorough social networks,
an interesting direction for future work is supporting Per-
sonalized Search, tailoring results to an individual’s inter-
ests, by incorporating information extracted from her profile.
An additional possible application of SimMeme is “Meme-
prediction", inspired by answer-generation works, e.g. pre-
dicting an adequate reply to an email. Similarly, we can
employ SimMeme for generating the appropriate Meme as
a reply to a natural language sentence. Another goal we are
currently pursuing is to devise a benchmark for Meme retrieval,
which can serve future academic research. Last, it would be
interesting to adapt our novel measure to other tasks requiring
to consider multiple object’s attributes such as entity resolution
and link prediction.
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