
Declarative User Selection with Soft Constraints
Yael Amsterdamer
Bar-Ilan University
Ramat Gan, Israel

Tova Milo
Tel Aviv University
Tel Aviv, Israel

Amit Somech
Tel Aviv University
Tel Aviv, Israel

Brit Youngmann
Tel Aviv University
Tel Aviv, Israel

ABSTRACT
In applications with large userbases such as crowdsourcing, social
networks or recommender systems, selecting users is a common and
challenging task. Different applications require different policies
for selecting users, and implementing such policies is application-
specific and laborious. To this end, we introduce a novel declarative
framework that abstracts common components of the user selection
problem, while allowing for domain-specific tuning. The framework
is based on an ontology view of user profiles, with respect to which
we define a query language for policy specification. Our language
extends SPARQL with means for capturing soft constraints which
are essential for worker selection. At the core of our query engine is
then a novel efficient algorithm for handling these constraints. Our
experimental study on real-life data indicates the effectiveness and
flexibility of our approach, showing in particular that it outperforms
existing task-specific solutions in prominent user selection tasks.

CCS CONCEPTS
• Information systems→ Resource Description Framework
(RDF); Web Ontology Language (OWL); Similarity measures;
Query languages;

KEYWORDS
Semantic Similarity; SPARQL; User Selection
ACM Reference Format:
Yael Amsterdamer, Tova Milo, Amit Somech, and Brit Youngmann. 2019.
Declarative User Selection with Soft Constraints. In The 28th ACM Interna-
tional Conference on Information and Knowledge Management (CIKM ’19),
November 3–7, 2019, Beijing, China. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3357384.3358025

1 INTRODUCTION
Effectively selecting user profiles from a repository is a central com-
ponent in many applications. Examples include crowd-based plat-
forms that aim to choose relevant members to perform a given task,
recommender systems that compute recommendations based on
the preferences of previous users, and social networks that identify

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’19, November 3–7, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3358025

1 SELECT ?u
2 FROM ontology WHERE
3 {?x instanceOf Place. ?x near Le_Marais,Paris}
4 FROM basic-profile(?u) WHERE
5 {?u livesIn ?x}
6 FROM extended-profile(?u) WHERE
7 {?u like Dogs} WITH SUPPORT >= 0.5
8 SIMILAR basic-profile(?u) TO basic-profile(Isabella)
9 RESTRICTED TO {?y hasProfession ?h}
10 WITH SIMILARITY >= 0.75
11 SIMILAR extended-profile(?u) TO
12 {?u practice Yoga. _ at Park.}
13 WITH SIMILARITY AS ?querySim >= 0
14 ORDER BY ?querySim LIMIT 5

Figure 1: Example SPARQ-U query QIsabella

users who share similar properties. The criteria for user selection
vary across applications, and include relevance of their profiles to a
query/task (e.g. [1]); their (estimated) expertise (e.g. [2]); their simi-
larity to the current end-users (e.g. [3]), and other considerations,
usually combined in ways that are application or domain-specific.
Lacking a generic solution, developers often have to invest non-
trivial efforts in employing user selection in new applications.

Machine learning methods may account for some of the above
mentioned facets and therefore be employed for user selection
in some applications. However, adapting their results to different
needs may require training data that is not always available for
every possible selection criteria, especially in new applications.
Moreover, it is harder to explain and refine the results of such
methods, due to their non-declarative nature. These shortcomings
of existing user selection tools often lead developers to implement
ad-hoc solutions, which are application specific, rarely shareable
and hard to maintain and optimize.

To this end, we develop a declarative framework for customized
user selection, which is geared towards being used by developers
of relevant applications, in their implementation of user selection
modules. We next demonstrate types of user selection criteria that
we support, then discuss the main components of the framework.

Running Example. Consider an online dating service supporting
customized search for potential partners. Using a Web interface,
our example user Isabella would like to specify her criteria for de-
sired partners: she is interested in users who live in the vicinity
of her neighborhood (Le Marais, Paris), like dogs, have a similar
profession to hers, and who practice yoga in the park. These criteria
can be categorized along two axes: hard versus soft constraints, and
client-dependent versus independent. E.g., Isabella may insist, as a
dog owner, on a partner who likes dogs (hard constraint). Other
criteria may still be acceptable if partially satisfied (soft constraints):
Isabella’s ideal partner may be a person who practices yoga in the

https://doi.org/10.1145/3357384.3358025
https://doi.org/10.1145/3357384.3358025

park, but she may also consider, e.g., a person who practices Pilates
(another kind of mind-body fitness), a person who enjoys spending
time in parks, etc. Some criteria depend on Isabella’s profile, and
may be captured by (partial) profile similarity: in Isabella’s case,
she seeks partners with a similar profession to hers. Others may be
independent of her profile: e.g., Isabella may have never practiced
yoga, yet wishes for a partner who will help her acquire this habit.
Generally, allowing customized selection of potential partners re-
quires analyzing and comparing the semantically rich data within
user profiles. The analysis must be supported by means of easily
specifying and efficiently evaluating hard and soft constraints, both
client dependent and independent, over this data.

We next overview the main components of our framework.

User Model. We support an RDF-based representation of user
profiles, in two complementary repositories: an RDF ontology that
captures application-specific and general knowledge (e.g., that yoga
is a form of activity) and user profiles that capture the sets of prop-
erties describing each user (e.g., name, location, etc.) using the
vocabulary defined by the ontology. Each property is composed
of (RDF-style) facts, e.g., “Isabella likes dogs”, which in turn are
composed of terms/concepts such as “likes” and “dogs”. To support
relative or uncertain information we further allow associating user
properties with a score called support level, that can captures de-
grees of user preferences, skills or activity (e.g. that Isabella likes
dogs a lot, or reads books in the park frequently). Such user profiles
are typically constructed from user input or derived by the hosting
system, e.g., from past user activity [4] or social networks [5]. Sup-
port scores may be derived from user-provided ratings or by tools
for user evaluation [2], (see details in Sections 2.1 and 6). To support
the practically common scenario of incomplete profiles, we allow
missing properties to be true or false (open-world assumption).

Query Language. Our query language SPARQ-U extends SPARQL
with constructs that account for soft constraints, including support
level in properties and similarity between profiles. This allows to for-
mulate, customize and combine common user selection operations.
Figure 1 shows an example “potential partners” query according to
Isabella’s input. Briefly, the first parts of the query (lines 2-7) define
hard constraints: potential partners must live around Le Marais and
like dogs. The other parts define soft/similarity constraints via the
SIMILAR construct: potential partners should resemble Isabella in
terms of profession (lines 8-10), and preferably practice yoga in the
park (lines 11-13).

Query Semantics. The introduction of soft constraints on user
profiles, requires extensions to the standard SPARQL semantics.
There is a large body of work on semantics for SPARQL with con-
straints [3, 6]; however, in our context the constraints may be
defined with respect to entire user profiles, each consisting of multi-
ple RDF facts which are in turn associated with numerical scores.
Our introduced semantics is then intuitively based on a “hypotheti-
cal” taxonomy whose individual nodes roughly correspond to sets
of facts from the original taxonomy, and edges to a subsumption
relation over such sets. This allows us to define similarity of two pro-
files or property sets, and in turn semantics for the soft constraints,
based on the maximal information content of a profile subsumed by

both. We provide some sanity checks for the introduced semantics
and demonstrate via examples that it is fitting for the task.

Query Evaluation. The above mentioned taxonomy over fact-sets
is hypothetical since if materialized, its size could be exponential
in the size of the input taxonomy (since the number of fact-sets is
exponential). In this sense, our semantics is non-operational. Our
main technical result is that, somewhat surprisingly, query evaluation
may still be performed in polynomial time. Briefly, based on the ob-
servation that our notion of semantic similarity is monotonic with
respect to the subsumption taxonomies, we can restrict our search
for the maximal information content to the lowest common ances-
tors (LCAs) of the input facts/fact-sets/profiles in these taxonomies.
Using structural properties of the fact and fact-set taxonomies we
gradually compute the LCAs of terms, facts, fact-sets and finally full
profiles, using at each stage the LCAs of simpler units. We analyze
the correctness and complexity of this algorithm.

Implementation and Experiments. Wehave implemented the above
components in a prototype system, including an optimized version
of our query evaluation algorithm. Our optimizations are based,
among others, on a caching mechanism that leverages properties of
SPARQ-U to make inferences based on intermediate results, and
thereby avoids a significant portion of the computations.

We have then conducted an extensive experimental study over
real data from existing crowdsourcing and social network platforms,
demonstrating the effectiveness and flexibility of our approach.
We specifically study in isolation the effect of each component
of our solution, showing each of them to contribute significantly
to the overall output quality. We further compare our solution
with non-declarative as well as task-specific algorithms, including
machine learning solutions. The results show that interestingly, our
framework is able to achieve better performance in common user
selection tasks while also being generic and declarative.

Paper Outline. We present our data representation and query
language in Section 2. In Section 3 we formally define the similarity
notions that are used to capture soft constraints, and in Section 4
we propose an efficient algorithm SPARQ-U query evaluation. Our
experimental study is described in Section 5. Related work is pre-
sented in Section 6 and we conclude in Section 7.

2 MODEL
We next describe our data representation, then present SPARQ-U,
an extension of SPARQL for user selection.

2.1 Data Model
Data repositories are represented using RDF for their basic building
blocks: sets of facts in the form of entity-relation-entity.

Definition 2.1 (facts and fact-sets). Let E and R be a set
of element/relation names, resp. A fact over (E,R) is defined as f ∈
E×R×(E∪Σ∗), where Σ is an alphabet. A fact-set is a set of facts.

We denote facts using the RDF notation {e1 r e2} or {e1 r l } where
e1, e2 ∈ E, r ∈ R and l ∈ Σ∗. Facts within a fact-set are concatenated
using a dot. We use to denote a term placeholder in facts that
use less than three terms. In what follows, we refer to terms, facts
and fact-sets by the collective name semantic units.

Figure 2: A sample ontology.

Ontology. An ontology is a named fact-set consisting of general
facts that are not related to a specific user, e.g., {Le_Marais in
Paris}. Figure 2 displays a partial ontology in the form of a graph,
where nodes are entities and edges are relations (some edge labels
are omitted). Ontologies typically contain a hierarchical taxonomy
of concepts, instances and properties, e.g., that Paris is a city and
that a city is a place. The ontology in Figure 2 includes a taxonomy of
concepts (rounded nodes, connected by subclassOf relation) with
instances (rectangular nodes, connected by instanceOf relation).

User Profiles. Each user profile includes two parts: a basic and
an extended profile. The basic profile consists of absolute prop-
erties about users in the form of a fact-set. E.g., Isabella’s profile
include the facts {Isabella livesIn Le_Marais,Paris. Isabella
hasProfession Mathematician}. The extended profile of a user de-
scribes each property by a separate fact-set that is further associated
with a numeric score in [0, 1] called its support values. This score
may reflect a rating, habit frequency, likelihood and so on, and is
useful in capturing user answers on a scale (such as ratings) or
(normalized) numeric properties derived by the system [2, 4].

Definition 2.2. An extended profile database is denoted by D =
⟨A,S⟩, where A is a set of fact-sets, and S : A→[0, 1] maps every
fact-set A to a support score sA.

Table 1 shows examples of extended profiles. (Ignore, for now,
the “Prevalence” and “IC” columns.) The support score associated
with Isabella’s liking of dogs (first row) may reflect a rating she
provided to the website (normalized to [0, 1]). The support score
of the second fact-set may reflect Isabella’s reported frequency of
reading books, e.g., every other day (normalized to [0, 1]).

2.2 User Selection Queries
We next overview the SPARQ-U query language. Our language ex-
tends SPARQL, using its native constructs to select relevant reposi-
tory parts and apply hard constraints. We further extend SPARQL
to support user selection queries. Our three main extensions are:
(e1) Variables allowing to dynamically choose from a pool of knowl-

edge repositories (user profiles).
(e2) Querying fact-sets along with their associated support values
(e3) New soft constraint/similarity constructs
We will exemplify the general syntax and semantics of SPARQ-U,
and specifically the abovementioned threemain extensions through
our running example query (QIsabella from the Introduction).

Syntactically, a SPARQ-U query is composed of two main types
of (optional) clauses: FROM. . .WHERE and SIMILAR. . .TO clauses, cor-
responding, resp., to hard and soft constraints. Soft constraints form

Fact-set Support Prevalence IC

Isabella likes Dogs 1.0 0.8 0.08
Isabella reads Books 0.5 0.25 0.48
Isabella reads Books.

at Jardin_des_Tuileries 0.01 0.1 0.72

Adam likes Dogs 0.75 0.8 0.08
Adam practices Mind-body_fitness.

at Park
0.28 0.45 0.3

Adam practices Pilates. at Jardin_des_Tuileries 0.27 0.2 0.55

Benjamin likes Dogs 0.5 0.8 0.08
Benjamin practices Yoga. at Park 0.01 0.2 0.55

Table 1: Extended user profiles.

a generic means of capturing useful notions in the context of user
selection such as user similarity, expertise and relevance.

The SELECT statement (line 1) defines a variable ?u, which will be
assigned names of candidate users used throughout the query and
as the output. Similarly to SPARQL queries, only users for which,
for some assignment of the other variables, all of the following
constraint clauses hold, i.e., return non-empty results, are selected.

The clauses standing for hard constraints use the FROM construct –
extension (e1) over SPARQL – that allows specifying the knowledge
repositories to be examined for each assignment of ?u at each
clause. The succeeding WHERE keyword is followed by a SPARQL
selection over the chosen repository. In lines 2-3 the query selects
places near Le Marais from the ontology, which are bound to the
variable ?x. In lines 4-5 the basic profile of ?u is examined to ensure
the candidate user lives near Le Marais. In lines 6-7 the extended
profile is examined to ensure that candidates likes dogs.The latter
clause demonstrates extension (e2) over SPARQL - allowing to
provide a bound (lower, in this case) over support values via the
WITH SUPPORT optional clause, which serves as a filter over the
clause selection results.

The soft constraints clauses (extension (e3)) are the most impor-
tant new feature of SPARQ-U, whose semantics are explained in
Section 3. The SIMILAR and TO keywords are each followed by a
repository or fact-set definition to be compared. To compare only
a subset of their facts, a SPARQL selection may be applied over
both using the optional RESTRICTED TO construct. A bound on the
computed similarity score can be defined to filter results through
the WITH SIMILARITY construct. In the example query, lines 8-10
define a similarity constraint between the basic profiles of ?u and
Isabella, restricted to user professions. Line 10 requires that the
similarity score for these subsets is ≥ 0.75. The clause in lines 11-13
considers the desired partner’s property “practices yoga at some
park” and identifies users whose profile contains a similar fact-
set. The maximal score of such fact-set per user is assigned to the
variable ?querySim. This score is then used in line 14 (an optional
ORDER BY clause) to rank the five most adequate users. I.e., among
all users that match the other parts of the query, those who most
frequently practice yoga at some park or have a highly similar habit,
will be returned. SPARQ-U enables combining the similarity scores
of multiple clauses using standard aggregate functions.

3 DEFINING SIMILARITY FOR SOFT
CONSTRAINTS

Recall that we have described three main extensions of SPARQ-U
w.r.t. SPARQL. The semantics of the first two extensions, (e1) and

(e2), was explained above, and the remaining challenge is to asso-
ciate a proper semantics with the SIMILAR operator (extension (e3)).

We start by noting that any given taxonomy can be interpreted
as a subsumption relation between elements or properties: e.g., every
occurrence of Mathematician subsumes Scientific_Occupation.
This relation may be lifted to subsumption between facts and fact-
sets that contain these terms [4, 7] (see Example 3.1). Formally, given
two terms t1, t2, let t1 ≤ t2 denote the fact that t1 is subsumed by
t2 (e.g., Scientific_Occupation≤Mathematician). The relation
≤ forms a partial order over the elements of E and relations of R.
Using the definition of [4], we can “lift” ≤ into subsumption partial
order over the compound semantic units, facts and fact-sets. First,
fact-sets are redefined to be non-redundant: any fact-set should not
contain two facts f1, f2 such that f1 ≤ f2. Then, for compound
semantic units X1, X2 it holds that X1 ≤ X2 iff for every simpler
unit P1 that is a composing unit of X1 (e.g. facts in a fact-set, terms
in a fact) there exists a corresponding unit P2 in X2 s.t. P1 ≤ P2.

Example 3.1. Scientific_Occupation≤Mathematician lifts
to {Isabella hasProfession Scientific_Occupation} ≤
{Isabella hasProfession Mathematician} in the partial order
over facts. Further lifting to fact-sets we have that: {Isabella
hasProfession Scientific_Occupation}≤{Isabella
hasProfession Mathematician. Isabella hasProfession
Paramedic.}.

The prevalence of a semantic unit X is defined as the fraction
of users whose profiles subsume this unit (e.g., the prevalence of
{User hasProfession Scientific_Occupation} will be measured
as the fraction of profiles including this or more specific facts, e.g.,
{User hasProfession Neuroscientist}). The smaller the preva-
lence, the more informative the semantic unit is, as it helps identi-
fying a more specific group of users.

We then define:

Definition 3.2 (Information content (IC)). Let X be a se-
mantic unit with the prevalence p(X). The IC of X is defined as:

ic(X) := − log
(

9 p(X)
10 + 0.1

)
Our notion of IC follows that of [6]. To ensure a value in [0, 1],

our IC formula performs an additional linear scaling on p(X) from
[0, 1] to [0.1, 1]. Importantly, this definition is monotonic w.r.t. the
partial order on semantic units: X ≤ Y entails that p(X) ≥ p(Y),
hence ic(X) ≤ ic(Y). This property will be useful in the sequel.

Example 3.3. Assume that 80% of the profiles include a fact that
subsumes a fact f . Then the IC of f is − log(9

10 · 0.8 +0.1) ≈ 0.09.

We are now ready to introduce IC similarity. Given two semantic
units, we define this measure as the maximal IC of a semantic unit
subsumed by both.

Definition 3.4 (IC similarity). Given a pair of semantic units
X ,Y within a subsumption partial order ≤, we define the IC similarity
of X and Y as icsim(X ,Y) := maxZ |(Z ≤X)∧(Z ≤Y) ic(Z). We extend
this definition to a pair of extended profile databases D = ⟨A,S⟩,
D ′ = ⟨A ′,S′⟩ by:
icsim(D,D ′) := maxA∈A,A′∈A′ icsim(A,A′).

The extension of the similarity function to databases computes
themaximal IC similarity over all pairs of fact-sets in these databases.

Example 3.5. Reconsider Table 1, and denote the fact-set specified
in QIsabella, lines 11-13 by Ā. The common ancestor with maximal
IC of Ā and Adam’s (resp. Benjamin’s) profile is {User practices
Mind-body_fitness. _ at Park} (resp. {User practices Yoga. _ at
Park}). The IC values of these ancestors, 0.3 and 0.55 for Adam and
Benjamin, are the similarity scores. This makes sense, as Benjamin’s
habit is identical to Isabella’s request, while Adam only resembles it.

IC similarity satisfies some natural properties of a similarity
function:

Proposition 3.6. icsim(·, ·) as formulated in Definition 3.4 satis-
fies the following properties. ∀X ,Y ,Z :
(1) Maximum self-similarity. icsim(X ,X) ≥ icsim(X ,Y)
(2) Symmetry. icsim(X ,Y) = icsim(Y ,X)
(3) Fixed value range. icsim(X ,Y) ∈ [0, 1]
(4) IC monotonicity. X ≤ Y ⇒ icsim(X ,Z) ≤ icsim(Y ,Z)

Accounting for support scores. The next step is accounting for sup-
port scores. We first provide a formula for comparing the support of
two semantic units (using, for uniformity, the same normalization
as in Def. 3.4), then use it to compare two extended profiles.

Definition 3.7 (Support similarity). Given a semantic unit
X , we compute the similarity of support values assigned to it by two
support functions S,S′ as

supsim(S(X),S′(X)) := − log
(

9 |S(X)−S′(X) |
10 + 0.1

)
We use this to compare profile databases D = ⟨A,S⟩, D ′ = ⟨A ′,S′⟩
by supsim(D,D ′) := 1 if

∑
A∈A∩A′ ic(A) = 0, else

supsim
(
D,D ′

)
:=

∑
A∈A∩A′ ic(A) · supsim(S(A),S′(A))∑

A∈A∩A′ ic(A)
Finally, we extend the definition to enable comparing a fact-set A and
an extended profile database D ′ = ⟨A ′,S′⟩, by
supsim(A,D ′) := supsim(DA,D

′), where DA = ⟨
⋃
A′≤A A′,S⟩ and

S is the constant function A′ 7→ 1.

Note that we weight the similarity of support score pairs by the
IC of the semantic unit they annotate, to give higher weights to
more specific fact-sets. E.g., similar support for practicing yoga will
have higher weight than similar support for practicing any kind
of mind-body fitness. The last extension of the formula to a single
fact-sets enables comparing the extended profile of a user with a
selected property, as in lines 11-13 of QIsabella from Figure 1.

The following proposition then holds:

Proposition 3.8. supsim(·, ·) as formulated in Def. 3.7 satisfies
properties (1)-(3) of Prop. 3.6, and the following.
(5) SupportMonotonicity. For every three extended profile databases

D = ⟨A,S⟩, D ′ = ⟨A,S′⟩, D ′′ = ⟨A,S′′⟩, if for every fact-set
X ∈ A it holds that
|S(X) − S′(X)| ≤ |S(X) − S′′(X)|, then it should follow that
supsim(D,D ′) ≥ supsim(D,D ′′).

Example 3.9. Consider again Table 1, and the fact-set Ā speci-
fied in QIsabella (lines 11-13). The only fact-sets in the intersection
of the databases are {Adam practices Mind-body_fitness. _ at
Park} for Adam and resp. {Benjamin practices Yoga. _ at Park}
for Benjamin. These fact-sets have a score of 0.28 for Adam and
resp. 0.01 for Benjamin, and by definition, a score 1 in DĀ. Then,

supsim(0.28, 1) ≈ 0.126 and resp. supsim(0.01, 1) ≈ 0.004 and these
are also the final support similarity scores. Note that the much lower
frequency of Benjamin’s habit results here in a much lower support
similarity in comparison with Adam’s.

Finally, the combined similarity – used for the SIMILAR clause
of SPARQ-U – is the product of semantic and support similari-
ties, i.e., for two extended profile databases D, D ′ : sim(D,D ′) :=
icsim(D,D ′) · supsim(D,D ′). Using the product here ensures that
for support scores fixed to 1, and specifically basic user profiles, the
combined score coincides with IC similairty. Moreover, the next
corollary follows from Propositions 3.6 and 3.8.

Corollary 3.10. The combined similarity sim(·, ·) satisfies con-
straints (1)-(5) from Props. 3.6 and 3.8.

Example 3.11. Following Examples 3.5 and 3.9, the combined sim-
ilarity scores for Adam and Benjamin are, resp., 0.126 · 0.3 = 0.038
and 0.004 · 0.55 = 0.002. Intuitively, Adam’s habit is only slightly
less (semantically) similar to Isabella’s specification, and so his much
higher frequency of practicing it made him overall a more desirable
partner.

Other similarity metrics may be plugged into our framework as
well, but we shall empirically show that the use of our measure
outperforms state-of-the-art alternatives for user selection.

4 QUERY EVALUATION
Selections in SPARQ-U (within RESTRICTED TO and WHERE clauses)
coincide by design with SPARQL selections. We assume henceforth
that these selections are performed by a black-box SPARQL engine,
that may employ any state-of-the-art indexing, query optimizations
and RDF reasoning (see Section 7). The implementation of some of
our extensions over SPARQL, namely, restrictions on support values
and repository specification as well as the support similarity com-
ponent of soft constraint evaluation, follow from their respective
definitions, and are thus not detailed here.

We focus here on two crucial aspects of the SPARQ-U engine.
The first is the computation of semantic similarity as a part of soft
constraint evaluation. The second is a cross-variable-assignment
optimization, which applies globally over the different query clauses
including soft constraints in contrast with the SPARQL black-box
that can only optimize SPARQL selections within the query locally.

4.1 Similarity Computation
Our contribution here is a novel PTIME algorithm for semantic
similarity computation, and the analysis of its complexity. The
tractability of this task is non-trivial, since it requires finding the
highest IC of an ancestor (in a hypothetical taxonomy consisting of
all fact-sets from the original taxonomy) common to two semantic
units. The size of the hypothetical taxonomy and consequently the
number of ancestors to consider may be exponential in the size of
the input taxonomy. Indeed, some other fact-set–related tasks were
shown to be intractable [4, 7]; yet surprisingly, we show here that
semantic similarity can be efficiently computed while avoiding the
materialization of the fact-set taxonomy.

Algorithm 1 outlines the functions required for efficiently com-
puting the semantic similarity of each input type. Its main function,
icsim(·, ·), employs by-case treatment to compute the similarity of

Function icsim(X ,Y)
1 if X = (A,S),Y = (A ′,S′) are extended profile

databases then
return maxA∈A,A′∈A′ ic(FactSetLCA(A,A′));

2 else if X ,Y are fact-sets then
return ic(FactSetLCA(X ,Y))

3 else if X ,Y are facts then
return maxf ∈FactLCA(X ,Y) ic(f)

4 else return maxt ∈LCA(X ,Y) ic(t);

Function FactLCA(f , f ′)
5 Let f = ⟨e1, r , e2⟩ and f ′ = ⟨e ′1, r

′, e ′2⟩;
6 return LCA

(
e1, e ′1

)
× LCA(r , r ′) × LCA

(
e2, e ′2

)
;

Function FactSetLCA(A,B)
7 L← ∅;
8 for f ∈ A, f ′ ∈ B do
9 L← L ∪ FactLCA(f , f ′);

10 for f = ⟨e1, r , e2⟩, f ′ = ⟨e ′1, r
′, e ′2⟩ ∈ L do

11 if e1 ≤ e ′1 ∧ r ≤ r ′ ∧ e2 ≤ e ′2 then L← L − { f };
12 return L;

Algorithm 1: icsim(·, ·) computation

extended profiles, fact-sets, facts and terms, assuming an implemen-
tation of ic(·) for any semantic unit. While the flow of the algorithm
is simple, it is the analysis of its components that guarantees an
overall low complexity.

The connection to LCA computation. Recall that by Def 3.4, the IC
similarity of two semantic units is the maximal IC of their common
ancestors. The following observation allows us to focus only on a
small subset of ancestors.

Observation 4.1. By IC monotonicity, it is sufficient to consider
only the maximal (most specific) common ancestors of two semantic
units in the computation of icsim(·, ·).

Similarity computation is thus connected to the well-studied
problem of finding the lowest common ancestor (LCA) in a gen-
eral DAG, representing the subsumption partial order. It is left to
show that the LCA computation we employ for each type of se-
mantic unit is correct. For terms, LCAs can be computed using
standard modules over the term taxonomy, given as a part of the
ontology. Thus, Algorithm 1 assumes an efficient implementation
of LCA(t , t ′), namely, searching the LCAs of two terms t , t ′ in a
general DAG representation of the term taxonomy. As explained,
to ensure efficiency/tractability, we wish to avoid materializing
taxonomies for facts/fact-sets. This is achieved by our costume im-
plementation of FactLCA and FactSetLCA, which uses LCA(t , t ′)
as a black-box.

Facts LCA computation. By the lifting of partial order from terms
to facts, every LCA of two facts can be shown to consist of three
terms that are LCAs for each of their respective terms, namely,
LCA

(
e1 r1 e ′1, e2 r2 e ′2

)
is of the form e r e ′ where e ∈ LCA(e1, e2),

r ∈ LCA(r1, r2) and e ′ ∈ LCA
(
e ′1, e

′
2
)
. Thus, FactLCA(f , f ′) returns

the set of facts that is the Cartesian product of the LCAs of each pair
of corresponding terms in these facts (line 6 of FactLCA(f , f ′)).

Lemma 4.2. Given two facts f , f ′, FactLCA(f , f ′) computes all
and only their LCAs.

Example 4.3. Assume that LCA(likes, practices) = {relatedTo,
knows}, and that LCA(Pilates, Yoga) = {Mind-body_fitness}. The
LCAs of the facts f ={User practices Pilates}, f ′ ={User likes
Yoga} consist of all combinations of term LCAs, i.e., {User relatedTo
Mind-body_fitness} and {User knows Mind-body_fitness}. Note
that f , f ′ may have many other common ancestors, e.g., {User knows
Thing}; but by Lemma 4.2, each such ancestor is subsumed by some
LCA and thus can only have a lower IC.

LCA computation for fact-sets. The FactSetLCA function com-
putes the LCA of fact-sets. Importantly, using the partial order over
fact-sets properties, we can prove that unlike the cases of terms or
facts, the following lemma holds.

Lemma 4.4. There exists exactly one LCA for every fact-sets-pair
A,B. FactSetLCA(A,B) computes this LCA.

Moreover, we can characterize this fact-set as the set of non-
redundant facts that are the ancestors of some facts-pair, f ∈ A
and f ′ ∈ B. To compute this set, the function FactSetLCA(A,B)
uses FactLCA(f , f ′) for each such pair, it takes their LCAs union
(lines 8-9) and then removes redundant facts (that are implied by
other facts, lines 10-11).

Example 4.5. Consider the LCA computation for the fact-sets
A = { f . f ′′.} ={User practices Pilates. at Park} and B =
{ f ′} ={User likes Yoga}. We compute the union of LCAs for the
fact pairs f , f ′ and f ′′, f ′ (lines 8-9 of FactSetLCA). Example 4.3
has shown the LCAs of f , f ′; and assume that FactLCA(f ′′, f ′) ={⊥
⊥ ⊥}, where ⊥ is a “root” term subsumed by any term. Namely,
FactLCA(f ′′, f ′) is subsumed by FactLCA(f , f ′) and should be re-
moved (lines 10-11). The resulting fact-set LCA is thus {User relatedTo
Mind-body_fitness. User knows Mind-body_fitness}. It is unique,
although the facts have multiple LCAs.

Analysis. The following proposition summarizes the complexity
bounds for IC similarity computation, according to known complex-
ity bounds for LCA computation of materialized taxonomies [8],
and assuming that IC computation of a given semantic unit is done
in O(1) (proof omitted). In what follows, w[Ψ] denotes the width
of the term taxonomy Ψ, namely, the maximum size of a set of
incomparable terms.

Proposition 4.6. After PTIME processing of the term taxonomy,
the complexity of computing IC similarity of X ,Y is:
• O(|LCA(X ,Y)|), if X ,Y are terms or facts.
• O

(
|X | |Y |w[Ψ]3 log (|X | |Y |w[Ψ])

)
, ifX ,Y are fact-sets (poly-

nomial in fact-set sizes and the taxonomy width).
• O(|X | |Y |) times the complexity of computing the IC similarity
of fact-sets, if X ,Y are extended profile databases.

4.2 Caching mechanism
We have so far discussed the similarity score of two concrete se-
mantic units or extended profiles, i.e., for a given assignment of
values to the SPARQ-U query variables. In some cases, we can im-
prove the overall performance of query evaluation by leveraging

the computations of one assignment to save computations for an-
other. Using IC monotonicity and the work in [4], which defines a
partial order over assignments such that more specific assignments
yield equal or more specific facts and fact-sets, this enables us to
make inferences across assignments, as follows.

Observation 4.7. Let C be the set of SIMILAR . . .TO clauses over
fact-sets (with implicit support 1) in some query.
• If some variable assignment φ, for some C ∈ C, is below the
similarity threshold Θ, then every more general assignment
ψ ≤ φ will be below Θ for C.
• If some variable assignment φ, for every C ∈ C, exceeds the
similarity thresholdΘC, everymore specific assignmentψ ≥ φ,
for every C ∈ C, will exceed ΘC.

Thus, by caching the results ofmaximally-specific (resp., -general)
assignments that are below (resp., above) the threshold, one can
avoid many redundant computations. This observation can then be
used as follows. The results for each considered assignment will be
stored in a cache. Whenever a new assignment is encountered, it
will first be checked whether it falls within one of the items in the
observation above. If it falls within the first item, it can be discarded.
If it falls within the second, there is no need to compute the similar-
ity for this assignment for clauses that involve fact-sets and whose
results are not used in ordering the query output, since the assign-
ment is guaranteed to satisfy these constraints. We ignore clauses
that are affected by support values, since their similarity is not IC
monotone. We leave the theoretical analysis of this improvement
for future research; yet, our experiments show the importance of
this optimization in practice.

5 IMPLEMENTATION AND EXPERIMENTS
We developed a prototype engine for evaluating SPARQ-U queries.
This engine uses preprocessing of the term taxonomy to speed up
LCA computation. A further speed-up is achieved by distributing
over multiple cores the similarity computation between different
user pairs. Finally, it employs a dedicated caching mechanism to
compactly store intermediate results and avoid unnecessary com-
putations, based on Observation 4.7. The prototype is implemented
in Java, using Apache Jena library (https://jena.apache.org/.) for a
SPARQL engine.

Since general-purpose user selection framework has not been
studied before, no standard benchmark over which one could test
the capabilities of SPARQ-U was available. We thus constructed
several benchmark datasets using real-world data including Q&A
platforms such as Stack Overflow (SO) [13] and social networks
such as AMiner [14], an academic social network. These datasets
provide natural scenarios for user selection, which we captured via
SPARQ-U queries as exemplified below.

5.1 Experimental Setup
Aswe describe next, we experimented with 5 different datasets from
two domains. In all datasets, the domain ontology was constructed
from DBpedia [15]. From space constraints, we present here only
the results obtained for two representative datasets.

Q&A datasets. We examined 3 Q&A platforms: StackOverflow
(SO), Mathematics and Ask-Ubuntu [13]. As the results over the
latter two demonstrated similar trends to SO, we focus here on SO

https://jena.apache.org/.

Competitor Description Goal Implementation

SPARQL Standard SPARQL, i.e., only using hard con-
straints without support thresholds.

Evaluating the impact of soft con-
straints.

Ignore SIMILAR clauses and support thresholds in
SPARQ-U queries.

No Support The same SPARQ-U queries, but support values
are ignored.

Evaluating the impact of support
values and our support similarity
measure.

Ignore hard constraints with support thresholds, use
only semantic similarity in query evaluation.

No Fact-sets The same SPARQ-U queries, but facts are con-
sidered individually and co-occurrence of facts
is ignored.

Evaluating the impact of fact-sets,
specifically in similarity computa-
tion.

Alter the database to include only facts.

Lin [9] A commonly used node semantic similarity
measure for ontologies.

An alternative similarity measure. Use the taxonomy to compute similarity scores of
relevant terms, return the average.

SimRank [10] A node similarity measure, commonly used for
link prediction in in social networks.

An alternative similarity measure. Represent profiles as an (RDF) subgraph, compute
the average similarity of relevant nodes.

PathSim [11] A node similarity measure that further consid-
ers the labels on path edges.

An alternative similarity measure. Represent profiles as an (RDF) subgraph, compute
the similarity of relevant nodes.

LINE [12] A representative node embedding technique for
converting a subgraph to a vector, used in clas-
sification and link prediction.

An alternative similarity measure. Relevant profile part are converted to vectors, over
which cosine similarity is applied.

SVM Users are selected using SVM, a common ma-
chine learning method for classification.

An alternative similarity measure. Context-dependent translation of profiles to vectors,
over which SVM is trained and applied.

Table 2: Baseline algorithms

as a representative example. SO is a popular Q&A platform, where
users’ questions are associated with a set of tags reflecting their
topics. Each user has a profile with properties such as name, repu-
tation score, etc. We collected over 900K questions in 300 popular
topics, asked by over 175K users. We then gathered their personal
profiles, and collected more than 2.3M of their previous answers,
to assemble a coherent subset. We constructed the basic profiles
from the extracted profiles. The extended profile of a user was con-
structed from the tags to which she contributed, with a support
value reflecting the portion of her contribution to that tag. The
resulting database consists of 20M entities.

Social networks.We studied two social network datasets, AMiner,
an academic social network and Pokec [16], a social network con-
taining user profiles and friendship relations. For brevity, we give
detailed results only for Aminer and mention briefly the results for
Pokec, which exhibited similar trends. We extracted from AMiner
the data of 1.7M computer science authors between 2005 − 2015
(over 2M papers). The basic profile of an author consists of her
affiliation, h-index, fields of interest, and publication data (e.g., title
and year). The extended profile records her co-authorships (with
support values reflecting the fraction of her publications with each
co-author), and publication venues (with support values reflect-
ing the fraction of her publications in each venue). The resulting
database consists of 16M entities.

Alternative algorithms. We compare our results to multiple alter-
natives, as detailed in Table 2. The first three baselines are restricted
variants of SPARQ-U, serving to examine the contribution of each
of the framework’s components. Particularly, these baselines help
to asses the contribution of soft constraints, by ignoring all SIMILAR
clauses; support scores, by using only semantic similarity; and the
use of fact-sets, by altering the database to include only facts. As an
example for the latter on Aminer, a fact-set describing the frequency
of a researcher publishing with two co-authors in some venue, is

decomposed to separate facts, each capturing one co-author or the
venue. As a result, the similarity metric is unable to account for in-
terdependencies in the profile data, e.g., that two authors published
with the same co-author in a similar venue.

Further, we considered five existing similarity measures as alter-
native to our notion of soft constraints (for fairness, hard constraints
are still used for initial filtering). Thesemeasures are all top preform-
ing representative examples for different approaches for similarity
assessment (see Section 6). Lin, SimRank and PathSim are all graph
node similarity measures, and hence require an adaptation to our
setting: we convert the profiles to a labeled graph form (similarly
to Figure 2), ignoring fact-sets and where support scores serve as
edge weights. Since similarity should be evaluated for subgraphs
(i.e. profile parts) we added “dummy nodes" representing the basic
or extended profile of a user. The SimRank and PathSim scores are
computed on these additional nodes, and for Lin, we compute the
average similarity between nodes pairs in the subgraphs (the node
pairs are chosen to have the same relation to the user). In contrast,
SVM and LINE use vector representations of the profiles, which
better account for the interdependencies in profile data. These rep-
resentations were achieved using LINE, also in the SVM baseline.
To implement SimRank, we used an efficient approximation tech-
nique suggested in [17], and used the scikit-learn implementation
for SVM. Additional similarity measures were examined, including
the cosine and Jaccard measures used in collaborative filtering. Due
to their inferior results, they are omitted from presentation.

All experiments were conducted on a Linux server with 24 cores
and 96GB memory.

5.2 Qualitative Experiments
SPARQ-U, being a declarative framework, is capable of capturing a
large variety of queries. In this set of experiments we focused on
specific scenarios which (A) are typical user selection scenarios,

1 SELECT ?u
2 FROM basic-profile(?u) WHERE
3 {?u creationDate ?d. Filter (?d < 19.6.2015) }
4 SIMILAR basic-profile(?u) TO basic-profile(J_Doe)
5 WITH SIMILARITY AS ?profSim > 0
6 SIMILAR extended-profile(?u) TO
7 {?u answeredOn Java. ?u answeredOn I/O }
8 WITH SIMILARITY AS ?topicSim > 0.2
9 ORDER BY AVG(?profSim, ?topicSim) LIMIT 30

Figure 3: User selection for Stack Overflow question.

1 SELECT ?u
2 FROM extended-profile(?u) WHERE
3 {?u collaboratedWith ?v.}
4 FROM extended-profile(?v) WHERE
5 {?v collaboratedWith J_Doe.}
6 SIMILAR basic-profile(?u) TO basic-profile(J_Doe)
7 WITH SIMILARITY AS ?profSim > 0
8 SIMILAR extended-profile(?u) TO extended-profile(J_Doe)
9 WITH SIMILARITY AS ?topicSim > 0
10 ORDER BY AVG(?profSim, ?topicSim) LIMIT 30

Figure 4: User selection for AMiner (for the user J Doe).

and (B) for which there exists a ground truth that enables evaluating
the correctness of the results.

Context-based recommendation. In this experiment we selected
users for a given task, as follows.
• Task: find users to answer a given question.
• Dataset: SO (Mathematics and Ask Ubuntu are omitted.)
• Our query: select the top-30 experts for the question’s top-
ics who are also similar to the asker.
• Adjustments: use only data generated before the question
posting time.
• Evaluation: for 500 random questions, the precision and
recall w.r.t. the ground truth.

The corresponding query (constructed automatically for one of
the 500 questions) is demonstrated in Figure 3.

Figure 5(a) shows the average precision and recall w.r.t. the real
answerers of each question on the SO dataset. Observe that the
average recall achieved by SPARQ-U is 0.8, i.e., in most cases, the
majority of answerers were successfully selected by our simple
query. This is extremely positive given the task difficulty: the true
answerers may be just a few out of many users that can potentially
answer the question. The average precision of SPARQ-U is 0.48,
the best among all alternatives. We note that here, precision values
cannot be much higher, since the set of all answerers is often smaller
than 30 (12 on average). Moreover, all alternatives may suffer from
lower precision by selecting adequate users who have “missed" the
question. Similar trends were obtained when varying the number
of selected users, and also for the two other platforms, where again,
SPARQ-U outperformed all competitors.

Among the alternative algorithms, the best results were obtained
for ones that account for support scores and profile data depen-
dencies, most notably SVM. However, none of these algorithms
accounts for all the features of profile data, supported by SPARQ-
U. For instance, SVM and LINE do not account explicitly for data
semantics. Or, SimRank (which performs better in other tasks) is
less adequate for assessing expertise areas. Moreover, unlike the
customizable SPARQ-U, the SVM was specifically trained for this
scenario and cannot be trivially adapted to other scenarios.

The cases where true answerers were not found by SPARQ-U
typically occurred due to missing data: in over 70% of cases, either

0

0.2

0.4

0.6

0.8

1

Precision Recall

P
re

ci
si

o
n

/R
e

ca
ll

va
lu

e
s

SPARQ-U SVM No Fact-set
LINE No Support SimRank
PathSim Lin SPARQL

(a) SO.

0

0.2

0.4

0.6

0.8

1

Precision Recall

P
re

ci
si

o
n

/R
e

ca
ll

va
lu

e
s

(b) AMiner.
Figure 5: Quality assessment

the asker or the answerers were new users with little past activi-
ties. Generally, we observed that the performance of all algorithms
deteriorates as the profiles of asker and answerers contain less in-
formation, but the differences between algorithms are preserved
(SPARQ-U achieves the best performance). An application owner
may address such “cold start” problems by actively asking new
users for missing data, or by using data from external sources.

Link prediction. Next, we focus on predicting links in social net-
works, as follows.
• Task: identify potential collaborators/friends.
• Datasets: AMiner and Pokec.
• Our query: collaborators of collaborators (resp. friends of
friends) of a user that also resemble her profile.
• Adjustments: use data up to 2013 for querying, and later
as ground truth to be predicted.
• Evaluation: (i) average precision and recall of top-30 poten-
tial collaborators/friends, and (ii) for 27 authors, the precision
of top-10 selected authors in a user study.

See Figure 4 for an example query on AMiner dataset. To obtain
the ground truth, we split the data into two parts: one contains
publications up to 2013, and the second contains publications in
later years (ground truth). To mitigate cold start issues, we focused
on authors with ≥ 10 publications. In AMiner, the SPARQL baseline
orders users by their h-index. Similar adjustments were made for
Pokec, e.g., we selected 1K users, randomly removed 1

3 of their
friends and used those relations as the ground truth.

The precision and recall of all baselines, averaged over 150
AMiner authors, are plotted in Figure 5(b). Note that the SPARQ-
U query achieved the highest precision and recall values (of 0.51
and 0.78). Similarly, SPARQ-U achieved best results on the Pokec
baseline as well, although the marginal advantage of SPARQ-U in
the Aminer setting is larger than in Pokec, due to richer semantics
of the data (e.g., a deeper taxonomy). Moreover, all approaches
perform better on Pokec than on AMiner. This stems from the
availability of more activity data in the former dataset.

Among all baselines, SimRank was the closest one to SPARQ-U,
yet as demonstrated, it does not perform as well in other scenarios.

0.01

0.1

1

10

1.7K 17.5K 175K

ti
m

e
 in

 s
e

co
n

d
s

size of database

1%

3%

5%

(a) Stack O. - time vs. #users

0.01

0.1

1

10

100

1.7K 17K 170K 1.7M

ti
m

e
 in

 s
e

co
n

d
s

size of database

1%

3%

5%

(b) AMiner - time vs. #users

0.1

1

10

10 100 500 1000

ti
m

e
 in

 s
e

co
n

d
s

Number of triples in the profiles

AMiner

Stack-Overflow

(c) Time vs. profile size

1.7

2

2.3

2.6

2.9

10 50 100 200

ti
m

e
 in

 s
e

co
n

d
s

Width

Aminer

Stack-Overflow

(d) Time vs. ontology width
Figure 6: Execution times.

SVM, which previously performed well, exhibits less impressive
results and is outperformed by LINE – intuitively, since LINE is
able to capture latent semantic relations. However, measures such
as PathSim and Lin that do consider semantic relations, achieved
poor performance here. This is mostly due to the fact that they are
designed to capture node similarity rather than full profiles.

AMiner user study. We recruited 27 researchers and for each of
them, executed the SPARQ-U query selecting 10 possible collab-
orators, excluding past co-authors (assuming researchers would
not object to collaborate with past co-authors), and asked them to
estimate how many of the selected users may be potential future
collaborators (precision). Note that in this study we could not esti-
mate the recall (this would require all potential future co-authors).
Yet our simple, generic query obtained some interesting results: On
average, the precision was 0.53. In particular, 89% of the partici-
pants found at least one recommendation relevant, and 85% of the
them found at least 3 out of 10 relevant.

We further analyzed the false positives for this study. In partic-
ular, only in 3 out of the 27 cases, the authors found the recom-
mendations irrelevant. These cases appear to be a consequence
of incomplete data (e.g., missing facts in their profiles) or unclean
data (e.g., authors with profiles not reflecting their current fields of
interest). There exists previous work on dealing with such issues,
e.g., by enriching the data using tools for building profiles from
social networks [5].

5.3 Scalability Evaluation
The queries in our quality assessment experiments had an average
execution time of less than 3 seconds. We further synthetically
tune different parameters of our settings by modifying: (1) the
percentage of users admitting hard constraints; (2) the profiles size
and (3) the ontology shape. For comparison, in the SO setting, the
average percentage of users admitted the hard constraints was ∼1%,

each profile contained 100 RDF triples on average, and the average
width/depth of the ontology part used was 50 and 7, resp.

We briefly report the running times of alternative algorithms.
These can be divided into two classes: approaches that require a
preprocessing (SVM, LINE, SimRank) and ones that can directly be
computed on the relevant subgraph induced by the hard constraints
(PathSim, Lin). The performance of the former were significantly
inferior in comparison with SPARQ-U. The preprocessing per query
(samplingwalks for SimRank [17], training amodel for SVM and em-
bedding the subgraphs for LINE) alone required above one minute
per query, and overall could not compare with SPARQ-U. Execution
times for the second class were similar to SPARQ-U for the tested
settings (differences smaller than 0.2 seconds). However, these alter-
natives exhibit a linear time growth in the profile size, as opposed
to SPARQ-U, which, as we show, facilitates a scalable computation
thanks to our caching. Figures 6(a) and 6(b) depict the average
running time for SO and AMiner queries, w.r.t. the database size,
and for different ratios of users admitting the hard constraints. Fig-
ure 6(c) depicts the average running times for these datasets and
fixed profile sizes between 10 and 1000 facts. The sublinear growth
in execution times demonstrates the effectiveness of our caching
mechanism. Since this mechanism leverages intermediate results to
save computations, its effect is increased when the number of users
or their profile size grows, and hence the overlap between their pro-
files, increases. In comparison, the execution time without caching
(omitted from the graphs) increases linearly with the number of
users, and was approx. 5 times slower for all tested settings.

Last, we examined the dependency of execution times on the
ontology shape. The results show no significant increase (see Fig-
ure 6(d) for width; similar results were observed for height), even
though our theoretical analysis predicts a polynomial upper bound.
The reason is that our preprocessing guarantees a constant time
computation of term LCAs, and the upper bound is met only in
cases where the number of LCAs is large, which is evidently rare
in practice.

6 RELATEDWORK
The selection of candidate users from a repository has been studied
in various contexts and for different needs.

Recommender systems leverage similarities between users (and
items) in order to recommend users (or items) to users [3]. In social
networks, recommendations are computed by techniques of link
prediction, which rely on analysis of the network structure [10].
However, none of these works consider a similarity measure that
can fully account for the rich semantics of our model, since our
lifting of IC similarity to general facts and fact-sets is novel.

The field of expert finding is concerned with selecting users
(individuals or a team) by an assessment of their level/areas of
expertise (e.g., [1, 18]). A related problem is quality control, where
users are selected based on (an estimation of) their performance
in previous tasks (e.g., [2]). Some contributions of these works are
orthogonal to ours: we can store derived expertise scores as the
support of fact-sets in user profiles, and use them to compute the
relevance of a user to a new context. In turn, our ranking of users
can then be used in task assignment. Our solution further differs
from these studies by providing a generic, declarative framework
for user selection.

Other query languages have been developed for user selection,
mostly in the context of social network analysis (e.g., [19, 20]). An-
other language that focuses on querying user preferences is pre-
sented in [21], and [22] introduced user-defined path searching
for relationships between users. We note that SPARQ-U only uses
selection constructs that are available in SPARQL, so some of the
dedicated constructs of the aforementioned languages (e.g., group
identification) may be used to further enrich our language. How-
ever, these languages do not incorporate semantic knowledge or
soft constraints, features which our experiments indicate to be vital
in various scenarios such as expert finding.

Our similarity measure is related to other similarity measures
for graph-like or semi-structured data (e.g., information network,
XML and RDF). Existing approaches can be divided into three main
classes: (i) structural similarity measures, where object similar-
ity is often based on the graph structure [10, 11] or other edit
distance-based methods (e.g., [23]); (ii) semantic measures, typi-
cally involving ontological knowledge [6, 9, 24, 25], which also
serves as the basis of our metric, and (iii) Measures that combine
structural and semantic properties. These include techniques such
as edge matching and path similarity, often dedicated to a specific
task (e.g., [26] for XML documents similarity), and, more recent,
state-of-the-art approaches based on representation learning, such
as node embedding [12]. The latter converts subgraphs to repre-
sentative vectors over which similarity can be computed. In our
experimental study we examined state-of-the-art representatives of
all of these approaches, showing that the competitors were outper-
formed by SPARQ-U in terms of quality, scalability and flexibility.
In particular, as mentioned in Section 5.1, the first two approaches
require non-trivial adaptations to allow comparing complex struc-
tures like fact-sets with support values (e.g., as we apply in our
experiments). Moreover, many practical semantic measures are
not domain-independent, but rather tailored to a specific context
such as bioinformatics research [24]. Representation learning can
account implicitly for graph substructures, but does not use ex-
plicit semantic information such as taxonomies, and requires a
time-consuming preprocessing step.

Other studies that considered semantic similarity include tasks
like entity matching in ontology alignment [27, 28] and similarity
search, which is used in evaluating imprecise or relaxed queries [29].
While some of these methods resemble ours in measuring similar-
ity of RDF subgraphs and using taxonomical data, their goal is
different: they aim to identify different representations of the same
entity/query answer. Thus, in contrast to our work, quantifying
similarity of distinct entities (e.g., French mathematicians and Ital-
ian physicists) is not targeted. Here too, user profiles that involve
fact-sets and support are not supported. Specifically, comparing
large profiles requires an efficient similarity computation, hence,
e.g., the NP-hard metric of [29] is not suitable for our setting.

7 CONCLUSION
This work presents a declarative framework that allows specifica-
tion of customized user selection criteria. Its SPARQL-based query
language has embedded constructs for capturing hard and soft con-
straints over (relevant parts of) user profile. Dedicated algorithms

and optimizations allow for efficient query processing. Our exper-
iments on real-life data indicate the effectiveness and usefulness
of our approach. Interesting directions for future work include ex-
tending the language to e.g. include diversification, clustering or
classification constructs, as well as further optimizations.

Acknowledgment. This work has been partially funded by the
Israel Innovation Authority, the Binational US-Israel Science foun-
dation, Len Blavatnik, the Blavatnik Family foundation, and by the
Israel Science Foundation (grants No. 1157/16 and 639/17).

REFERENCES
[1] H. Rahman, S. Thirumuruganathan, S. B. Roy, S. Amer-Yahia, and G. Das, “Worker

skill estimation in team-based tasks,” PVLDB, 2015.
[2] J. Fan, G. Li, B. C. Ooi, K. Tan, and J. Feng, “iCrowd: An adaptive crowdsourcing

framework,” in SIGMOD, 2015.
[3] T. Di Noia, R. Mirizzi, V. C. Ostuni, D. Romito, and M. Zanker, “Linked open data

to support content-based recommender systems,” in I-SEMANTICS, 2012.
[4] Y. Amsterdamer, S. B. Davidson, T. Milo, S. Novgorodov, and A. Somech, “OASSIS:

query driven crowd mining,” in SIGMOD, 2014.
[5] D. E. Difallah, G. Demartini, and P. Cudré-Mauroux, “Pick-a-crowd: Tell me what

you like, and i’ll tell you what to do,” in WWW, 2013.
[6] P. Resnik, “Using information content to evaluate semantic similarity in a taxon-

omy,” in IJCAI, 1995.
[7] A. Amarilli, Y. Amsterdamer, and T. Milo, “On the complexity of mining itemsets

from the crowd using taxonomies,” in ICDT, 2014.
[8] M. A. Bender, G. Pemmasani, S. Skiena, and P. Sumazin, “Finding least common

ancestors in directed acyclic graphs,” in SODA, 2001.
[9] D. Lin et al., “An information-theoretic definition of similarity.” in Icml. Citeseer,

1998.
[10] G. Jeh and J. Widom, “Simrank: A measure of structural-context similarity,” in

SIGKDD, 2002.
[11] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim: Meta path-based top-k

similarity search in heterogeneous information networks,” PVLDB Endowment,
2011.

[12] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale in-
formation network embedding,” in WWW. International World Wide Web
Conferences Steering Committee.

[13] “Stack exchange website,” 2017, https://stackexchange.com/.
[14] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer: extraction and

mining of academic social networks,” in SIGKDD, 2008.
[15] “About DBpedia,” 2017, http://wiki.dbpedia.org/about.
[16] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset collec-

tion,” http://snap.stanford.edu/data, Jun. 2014.
[17] B. Tian and X. Xiao, “Sling: A near-optimal index structure for simrank,” 2016.
[18] S. B. Roy, I. Lykourentzou, S. Thirumuruganathan, S. Amer-Yahia, and G. Das,

“Task assignment optimization in knowledge-intensive crowdsourcing,” PVLDB,
2015.

[19] M. Martın, C. Gutierrez, and P. Wood, “SNQL: A social networks query and
transformation language,” in AMW, 2011.

[20] R. Ronen and O. Shmueli, “SoQL: A language for querying and creating data in
social networks,” ser. ICDE, 2009.

[21] M. Jacob, B. Kimelfeld, and J. Stoyanovich, “A system for management and
analysis of preference data,” PVLDB, 2014.

[22] J. Liang, D. Ajwani, P. K. Nicholson, A. Sala, and S. Parthasarathy, “What links alice
and bob?: Matching and ranking semantic patterns in heterogeneous networks,”
2016.

[23] J. Tekli, R. Chbeir, and K. Yetongnon, “Structural similarity evaluation between
xml documents and dtds,” in WISE. Springer, 2007.

[24] G. K. Mazandu, E. R. Chimusa, and N. J. Mulder, “Gene ontology semantic similar-
ity tools: survey on features and challenges for biological knowledge discovery,”
Briefings in bioinformatics, 2016.

[25] N. Seco, T. Veale, and J. Hayes, “An intrinsic information content metric for
semantic similarity in WordNet,” in ECAI, 2004.

[26] S. Amer-Yahia, L. V. Lakshmanan, and S. Pandit, “Flexpath: flexible structure and
full-text querying for xml,” in SIGMOD. ACM, 2004.

[27] V. Rastogi, N. Dalvi, and M. Garofalakis, “Large-scale collective entity matching,”
PVLDB, 2011.

[28] F. M. Suchanek, S. Abiteboul, and P. Senellart, “Paris: Probabilistic alignment of
relations, instances, and schema,” PVLDB, 2011.

[29] W. Zheng, L. Zou, W. Peng, X. Yan, S. Song, and D. Zhao, “Semantic SPARQL
similarity search over RDF knowledge graphs,” PVLDB, 2016.

https://stackexchange.com/
http://wiki.dbpedia.org/about
http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Model
	2.1 Data Model
	2.2 User Selection Queries

	3 Defining Similarity for Soft Constraints
	4 Query Evaluation
	4.1 Similarity Computation
	4.2 Caching mechanism

	5 Implementation and Experiments
	5.1 Experimental Setup
	5.2 Qualitative Experiments
	5.3 Scalability Evaluation

	6 Related Work
	7 CONCLUSION
	References

