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ABSTRACT

The use of probabilistic datalog programs has been advocated for
applications that involve recursive computation and uncertainty.
While using such programs allows for a flexible knowledge deriva-
tion, it makes the analysis of query results a challenging task. Par-
ticularly, given a set O of output tuples and a number k , one would
like to understand which k-size subset of the input tuples has af-
fected the most the derivation ofO . This is useful for multiple tasks,
such as identifying critical sources of errors and understanding
surprising results. To this end, we formalize the Contribution Max-
imization problem and present an efficient algorithm to solve it.
Our algorithm injects a refined variant of the classic Magic Sets
technique, integrated with a sampling method, into top-performing
algorithms for the well-studied Influence Maximization problem.
We propose to demonstrate our solution in a system called PODIUM.
We will demonstrate the usefulness of PODIUM using real-life data
and programs, and illustrate the effectiveness of our algorithm.
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1 INTRODUCTION

Real-life applications often rely on an underlying database in their
operation. While many of these applications employ convectional
SQL as their query language, the use of probabilistic datalog has been
recently advocated for applications that involve recursive computa-
tion and uncertainty, including e.g., network management [11], and
information extraction [5]. To illustrate, consider AMIE [5], a sys-
tem thatmines logical rules fromKnowledge Bases (e.g., YAGO [12]),
based on correlations in the data. The mined rules, treated as a
datalog program, are evaluated w.r.t. a KB, e.g., to address data
incompleteness. Since the rules are automatically mined, there is
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exports
Country Product
France wine
France vinegar
France oil
Cuba tobacco
Cuba sugar
Cuba nickel
Russia gas

imports
Country Product
Germany wine
USA vinegar
Pakistan oil
India tobacco
Denmark sugar
Iran nickel
Ukraine gas

dealsWith (edb copy)
Country Country
France Cuba

Table 1: Example Database.

an inherent uncertainty w.r.t. their validity. AMIE thus associates
probabilities to the rules, yielding a probabilistic datalog program.

The use of probabilistic datalog allows for a flexible and ex-
pressive knowledge derivation, yet introduces intricate relations
between the data items. This makes the analysis of query results
a challenging task. In particular, given a set O of output tuples of
interest, one would like to understand which k-size subset of the
input tuples have affected the most the derivation of O . This is use-
ful for multiple tasks, such as identifying critical sources of errors
and understanding the reasons for surprising results [6, 9]. Acquir-
ing information about the most influential tuples may also serve
users in obtaining explanations for output tuples using selective
provenance tracking systems such as [4]. These systems provide
explanations based on user-defined patterns, however, defining the
patterns may be challenging without prior knowledge on the tuples
that have contributed the most to the results.

To illustrate our problem consider the following example.

Example 1.1. Consider a probabilistic datalog program consisting

of 3 rules, mind by AMIE over YAGO. A sample database instance is

depicted in Table 1. This program outputs a binary relationdealsW ith,
including information on international trade relationships.

r1(0.8) dealsWith(a, b):- dealsWith(b, a)
r2(0.7) dealsWith(a, b):- exports(a, c),imports(b, c)
r3(0.5) dealsWith(a, b):- dealsWith(a, f), dealsWith(f, b)

Focusing on a set of derived facts of interest (e.g., dealsWith(USA, Iran),
dealsWith(Pakistan, India) dealsWith(Russia, Ukraine)),
one may wish to understand which database facts have led to this

inference. Presenting all tuples that took part in the computation as an

explanation may be cumbersome and not informative. For instance,

nearly 36% of the database tuples are used to derive solely the fact

dealsWith(USA, Iran). Thus, it is of great importance to identify

a small set of facts that have contributed the most to this inference.

To facilitate such an analysis, one needs first to formally quantify
the notion of contribution, while considering the following three
issues: First, as opposed to the simple SQL setting, the recursive
relationship between input and output data, and the uncertainty in-
duced by the rules’ probabilities need to be considered. For instance,
in the above recursive program, the rules’ probabilities (in paren-
thesis) model the fact that transitive trade relations are considered
less trustworthy than direct relations. Second, note that selecting
the top k tuples with the highest individual contribution is not the
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same as finding a k-size set with highest overall contribution, as
two input tuples may contribute to exactly the same derived facts.
Therefore, one must consider the joint contribution of a set of input
tuples to a set of output tuples. Our definition, which considers
such joint contribution of sets of tuples, ensures a greater coverage
of the target tuples of interest. Last, the rules’ probabilities are
independent, and so are the instantiations of each rule. Thus, the
independence of a single rule instantiation from other derivations
in the program needs to be considered as well. For instance, among
many other tuples, the tuple t1 = dealsWith(France, Cuba) takes
part in the derivation of t2 = dealsWith(USA, Iran). To properly
asses its own contribution to t2, we focus in our definition on the
marginal contribution of t1 (or more generally, of a k-size set of
tuples of interest), regardless of other parts in the derivation.

To this end, we formalize the Contribution Maximization (CM)
problem of finding, among a set of database tuples of interest T ,
a bounded-size subset with the maximal contribution to a target
set of output tuples O . Interestingly, a similar problem was studied
in the context of social networks analysis. Particularly, the classic
Influence Maximization (IM) problem [7] is the problem of finding
a bounded-size set of influential users in a social network (called a
seed-set), so that their aggregated influence (which may propagate
transitively in the network) on other users is maximized. Reducing
our problem to this well-studied problem allows the use of highly ef-
ficient algorithms developed for IM. However, as we explain, a naïve
such approach yields prohibitively expensive algorithm, in terms
of both memory consumption and running times. To overcome this,
we propose an optimized algorithm which injects a refined variant
of the classical Magic Sets technique [2], integrated with a sampling
method, into the (adapted) IM algorithms. We have implemented
our solution in a system called PODIUM (PrObabilistic Datalog
contrIbUtion Maximization), which we will demonstrate here.

RelatedWork. There is a wealth of work on query results explana-
tion. One line of works utilizes data provenance [4, 8, 10], however,
provenance for recursive datalog is known to be large and often
impractical to materialize. Another line of works points, like us, on
database tuples that have significantly affected the results [6, 9, 10]).
However, those works have mainly focused on non-recursive SQL
queries, very often disregarding probabilistic inference. Furthermore,
they have only focused on quantifying the contribution of a single
database tuple to a single output tuple. Among the variety of works,
our approach is most similar to the work presented in [9], where the
notion of responsibility for non-recursive SQL queries was defined
(for a single input/output tuple). While their relational SQL setting
can be seen as a restricted version of ours, a key difference is that
we aim to quantify the marginal contribution of input tuple(s) to
output tuple(s) independently of other derivations in the program,
whereas they focus on dependencies. Our work and theirs are thus
complementary, providing two alternative angles of involvement
in the result computations.

2 TECHNICAL BACKGROUND

We start by providing a brief overview of (probabilistic) datalog and
the IM problem, then present the CM problem and our optimized
algorithm. For space constraint, proofs and formal definitions are
deferred to our technical report [14].

2.1 Preliminaries

Probabilistic Datalog. We refer the reader to [2] for a formal
definition of (probabilistic) datalog and here we only illustrate it
with the example presented in the Introduction.

Consider again the probabilistic datalog program depicted in
Example 1.1, which outputs the binary relation dealsWith (an edb
“copy" of this relation appears as well, with rules for copying its
content that are omitted for brevity). The probabilities, in paren-
thesis, model the fact that transitive trade relations are considered
less trustworthy (likely to happen) than direct relations1.

We refer to a probabilistic datalog program as a pair (P ,w)where
P is a set of rules and w is a function assigning probabilities to
them. The interpretation of a rule r ’s probability is that we trust
a given instantiation of r with probability of w(r ). The lefthand
side of a rule is called the rule’s head, and the righthand side is its
body. Rules are evaluated w.r.t. a database. Consider the database
in Table 1, for the rule r2 we may assign the variables a,b, c the val-
ues France, Germany ,wine, resp. Each rule instantiation r (inst)
may generate a new fact (e.g., dealsWith(France,Germany)). New
facts are added to the program output, denoted as P(D), and the
evaluation continues until reaching a fixpoint. In the derivation
process of a probabilistic program, for each rule instantiation that

has not been considered yet, we draw if it should be fired according
to the rule’s probability. Only instantiations for which the result of
the draw was positive are fired.

We distinguish between extensional (edb) and intentional (idb)
database facts. The former are the input facts while the latter are
derived by the program. It is common to describe the process of
datalog evaluation through the notion of derivation trees [4, 8, 10].
A derivation tree of a tuple t is a finite tree whose root is labeled by
t , the leaves by edb facts, and the internal nodes by idb facts. The
children of a node n correspond to an instantiation of a rule r . For
example, consider the subgraph within the dashed part of Figure 1,
representing a derivation tree of dealsWith(USA,Iran).

Influence Maximization (IM). As mentioned, we employ concepts
from the classic IM problem for our Contribution Maximization
problem. Let G = (V ,E,W ) be directed weighted graph models a
social network, where V is the set of nodes (users) and each edge
(u,v) ∈ E is associated with a weightW (u,v) ∈ [0, 1]. Given a
function I (·) dictating how influence is propagated in the network
and a number k , IM is the problem of finding a seed-set of users S =
arдmaxT ⊆V , |T |=k I (T ), where I (T ) denotes the expected number of
nodes influenced byT . The function I (·) is defined by a propagation
model. We will employ here the common Information Cascade (IC)
model, which is compatible with most IM algorithms [3, 13].

The influence of a seed-set under the IC model is estimated as
follows. Independently, for each edge (u,v)with the weightW (u,v)
we flip a coin indicating whether this edge is active or not. The
edges in G for which the coin flip indicated an activation will be
successful are declared to be live; the remaining edges are blocked.
Fixing the outcomes of the coin flips and initially activating a seed
set S , a node v ends up influenced if there is a path from some node
in S to v consisting entirely of live edges.

1Since probabilities on database tuples can be modeled by probabilistic rules, we
consider here only rules probabilities.
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ex(FR,vinegar) im(USA,vinegar)
1 1

r2 (ex(FR,vinegar),im(USA,vinegar)
0.7

dw(USA,FR)

dw(FR,CU)

ex(CU,nickel) im(IR,nickel)
11

r2 (ex(CU,nickel),im(IR,nickel)
0.7
dw(CU,IR)
1

1

r3 (dw(FR,CU), dw(CU,IR))
0.5

dw(FR,IR)
1 1

r3 (dw(USA,FR), dw(FR,IR))
0.5
dw(USA,IR)

ex(CU,tobacco) im(IN,tobacco)

1 1
r2 (ex(CU,tobacco),im(IN,tobacco)

0.7
dw(CU,IN) ex(FR,oil) im(PK,oil)

1 1
r2 (ex(FR,oil),im(PK,oil)

0.7
dw(PK,FR)

1

1

r3 (dw(FR,CU),dw(CU,IN))

0.5
dw(FR,IN)

1 1
r3 (dw(PK,FR), dw(FR,IN))

0.5
dw(PK,IN)

1 r1 (dw(USA,IR))

0.8
dw(IR,USA)

1
r1 (dw(IR,USA))

0.8

1r1 (dw(PK,IN))
0.8

dw(IN,PK)
1

r1 (dw(IN,PK))

0.8

Figure 1: A partialWD graph.

Recent IM algorithms are based on the Reverse Influence Sam-
pling (RIS) approach [3], which samples nodes independently and
uniformly, then for each sampled node, constructs a Reverse Reach-
ability (RR) set consisting of its sampled sources of influence. Next,
k nodes that maximize the number of covered RR sets are selected.

2.2 Problem Formulation

We next formalize the notion of tuples contribution and define the
Contribution Maximization problem.

Given a probabilistic datalog program, consider all its possible
executions, and recall that in each such execution every instantia-
tion of a rule r (inst) is drawn to fire with a probability ofw(r ). We
devise the Weighted Derivation (WD) graph, a directed graph that
captures all these possible executions, integrating all derivation
trees of the program by merging their common parts.

More formally, let (P ,w) be a probabilistic datalog program and
D a database instance. The correspondingWD graph G = (V ,E,W )

is defined as follows. There is a distinct node per each edb tuple,
each idb tuple, and each rule instantiation. For every rule instantia-
tion r (inst) = h:-b1, . . . ,bn , the node r (inst) has n incoming edges
(bi , r (inst)), i = 1 . . .n, from the edb/idb facts in its body, and an
outgoing edge (r (inst),h) to the idb fact h in its head. Each edge of
the form (r (inst),h) is assigned with the rule’s weightw(r ), and all
other edges have a weight of 1.

Example 2.1. Continuing with our running example, Figure 1 de-

picts a partial WD graph. Here the idbs are colored in red, the edbs in

yellow, and the auxiliary rule instantiations nodes are colored in pur-

ple. Observe that two derivation trees of the idbs dealsWith(USA,Iran),
dealsWith(Pakistan, India) have been merged.

Intuitively, a tuple t1 ∈ D contributes to a tuple t2 ∈ P(D) if the
WD graph contains a path from t1 to t2. To quantify the marginal
contribution of the derivations involving a set of tuples T ⊆ D
to a set of tuples O ⊆ P(D), independently of other derivations in

the graph, we consider a random draw of fire-or-not for all rules
instantiations (edges) in the graph. We measure the contribution as
the expected number of tuples fromO reachable from tuples inT in

such a randomly generated subgraph. Formally, given theWD graph
G of a database D and a program (P ,w), let д be a random subgraph
generated from G as described above. We define the contribution of
a set T ⊆ D to a set O ⊆ P(D), denoted c(T  O), as the expected
number of nodes in O reachable from nodes in T in the subgraph д.

Observe that this definition captures the natural properties ex-
pected from a contribution function, as discussed in the Introduc-
tion. Namely, the recursive relations and the uncertainty are cap-
tured via the WD graph. The more paths from T to O that the
WD graph contains and the higher the probabilities of rules they
include, the greater is the contribution of the set T to the set O .
Moreover, our measure captures the involvement of tuples in T in
the derivation of the tuples in O , independently of other parts of
the derivations. This implies that we capture the contribution of T
to O , regardless of the probability of the other facts.

We are now ready to formally define the CM problem.

Definition 2.2 (CM). Given a probabilistic datalog program

(P ,w), a database D, a set T ⊆ D, a set O ⊆ P(D), and a number

k ≤ |D |, find a k-size set S ⊆ T s.t: S = arдmaxS ′⊆T E[c(S
′ O)]

Example 2.3. Continuing with our example, let T = D, O =
{dealsWith(USA,Iran),delasWith(Pakistan, India),
delasWith(Russia, Ukraine)}, and k = 2. Observe that the tu-

ple dealsWith(France,Cuba) is involved in the derivations of both

the tuples dealsWith(USA,Iran), dealsWith(India,Pakistan),
while all other database tuples are a part of the derivation of a sin-

gle derived fact. Intuitively, to maximally contribute to all facts in

O , we need to pick one edb fact that is a part of the derivation of

delasWith(Russia, Ukraine) (i.e., exports(Russia, gas),
imports(Ukraine, gas)) and the fact dealsWith(France,Cuba).
Indeed, any such pair yields the maximal contribution score.

2.3 Algorithms

Naïve algorithm. A key observation is that our contribution func-
tion matches nicely the IM influence function. Indeed, CM can be
formulated as a variant of IM. Therefore, as we show in [14], exist-
ing IM algorithms can be adjusted to solve CM. A naïve algorithm
would therefore be to first build the WD graph, then to run an
(adjusted) IM algorithm over it. However, our experimental results
show that the WD graph may be prohibitively large, and thus this
naïve algorithm, referred to as NaïveCM, is impractical.

Optimized algorithm. We therefore devise an optimized algo-
rithm, referred to asMaдicSCM, that achieves a significant saving
in both memory and running time by employing two optimizations.

Our first optimization harnesses principles from the classicMagic
Sets transformation [2], to construct only the graph parts that are
essential for the computation of the (adjusted) IM algorithm. We
refer to our algorithm with only this Magic Sets optimization as the
MaдicCM algorithm. In short, recall that NaïveCM constructs the
fullWD graph, then employs an IM algorithm, which constructs for
each sampled idb node its corresponding RR set. In theMaдicCM
algorithm, rather than constructing the full WD graph G, we build
on-the-fly, for each sampled node, only the subgraph of G that is
relevant to its RR set computation. For that we consider, for each
sampled tuple t , a top-down evaluation of the program P with the
query q = t . We apply the Magic Sets transformation to obtain a
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new program Pmt that computes only the relevant facts, then assign
probabilities to the rules, obtaining a new program (Pmt ,w

m
t ). The

key challenge here is assigning probabilities to the rules of the
transformed program s.t. the newWD graph is isomorphic to the
desired subgraph of the originalWD graph.

Our second optimization refines the above process by bundling
the subgraph construction with the sampling done by the IM algo-
rithm. We refer to MaдicCM enhanced with this optimization as
MaдicSCM. In short, we utilize the fact that in the IM algorithm
the RR set computation contains a further sampling process that
considers only a sampled subgraph of G. We can thus incorporate a
sampling step in the subgraph construction, building a significantly
smaller subgraph of theWD graph that includes only such sampled
edges. The key challenge here is to carefully inject the IM sampling
into the Magic-Set graph construction, yielding a subgraph that is
still isomorphic to the relevant part of the originalWD graph.

3 SYSTEM AND DEMONSTRATION

Implementation. PODIUM is implemented in JAVA 8 by extend-
ing IRIS [1], a JAVA-based system for datalog evaluation. The (ad-
justed) IM algorithm our prototype employs is IMM [13]. The user
interacts with the system using a dedicated user interface, imple-
mented in HTML5/CSS3, depicted in Figure 2 (see details below).

Demonstration. We demonstrate the usefulness of PODIUM us-
ing real-life data extracted from YAGO, and probabilistic datalog
programs, whose rules and their probabilities were mined by AMIE.
The participants will be asked to play the role of data analysts,
examining the benefits of PODIUM in analyzing the output of data-
intensive applications. We also provide a “behind the scenes" view
of the system, demonstrating the effectiveness of our optimizations.

We begin the demonstration by presenting the capabilities of
PODIUM using multiple examples in different domains, such as
trading data, academic influence relations, movies and geographic
data. Using PODIUM UI, the participants will first pick a domain
(i.e., tables and a datalog program). See, for example, the upper part
of Figure 2, where the chosen domain is trading data. We will then
browse through the relevant tables (here, the Exports, Imports
and DealsWith tables) focusing on intriguing derived facts, and use
the UI to select sets of input/output tuples of interest. The selection
is done by pointing on the selected tuples, or alternately, inserting
simple patterns specifying the tuples of interest. For example, in
Figure 2, using patterns, we have chose the set of input tuples to
be all tuples stating that some country is exporting uranium (us-
ing the pattern Exports(*,Uranium)), and have manually pointed
on several output tuples (e.g., DealsWith(United States,North
Korea)). Advanced users can specify the tuples of interest using
general SQL queries on the input/output tables via a text-based
editor, using the advanced screen. Next, we show that the number
of tuples involved in the computation is indeed very large (which
motivates focusing on a small set of influential tuples), then let
the user choose how many tuples they want to focus on (by set-
ting k). The set of k most influential edb tuples and their expected
contribution scores, are then displayed on a results page (omitted
from presentation for space constraint). To visualize the tuples’
contribution, we further display the relevant parts of theWD graph
and highlight the derivation paths on it.

Figure 2: PODIUM UI: Input Builder.

Next, we will illustrate to the audience the running time and
memory reduction of our optimized algorithm, compared with the
naïve approach. For this part of the demonstration, wewill use grow-
ing fragments of the underlying database, showing the limitations
of NaïveCM to scale. We will run PODIUM in three modes, employ-
ing our three algorithms:NaïveCM,MaдicCM, andMaдicSCM. We
will present the running times and memory consumption of each
algorithm, illustrating the effect of each optimization. For example,
we will show that, on average,MaдicCM andMaдicSCM achieve
each a memory reduction of 2 and 3 orders of magnitude, resp.
compared with NaïveCM (see further experimental results in [14]).
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