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ABSTRACT
Influence Maximization (IM) is the problem of finding a set of in-
fluential users in a social network, so that their aggregated influ-
ence is maximized. IM has natural applications in viral marketing
and has been the focus of extensive recent research. One critical
problem, however, is that while existing IM algorithms serve the
goal of reaching a large audience, they may obliviously focus on
certain well-connected populations, at the expense of key demo-
graphics, creating an undesirable imbalance, an illustration of a
broad phenomenon referred to as algorithmic discrimination. In-
deed, we demonstrate an inherent trade-off between two objectives:
(1) maximizing the overall influence and (2) maximizing influence
over a predefined “protected" demographic, with the optimal bal-
ance between the two being open to different interpretations. To
this end, we present IM-Balanced, a system enabling end users to
declaratively specify the desired trade-off between these objectives
w.r.t. an emphasized population. IM-Balanced provides theoretical
guarantees for the proximity to the optimal solution in terms of
both objectives and ensures an efficient, scalable computation via
careful adaptation of existing state-of-the-art IM algorithms. Our
demonstration illustrates the effectiveness of our approach through
real-life viral marketing scenarios in an academic social network.

1 INTRODUCTION
Social networks attracting millions of people, such as Facebook,
LinkedIn, and Sina Weibo, have emerged recently as a prominent
marketing medium. Influence Maximization (IM) is the problem of
finding a set of influential users (termed a seed set) in the network, so
that their aggregated influence is maximized [7]. IM has a natural
application in viral marketing, where companies promote their
brands through theword-of-mouth propagation. This hasmotivated
extensive research [2, 9], emphasizing the development of scalable
IM algorithms [6, 11].

The majority of IM works focus on maximizing the overall in-
fluence, given a seed set size requirement. While this serves the
goal of reaching a large audience, IM algorithms may obliviously
focus on certain well-connected populations, at the expense of
key demographics. This may create an undesirable imbalance, a
conspicuous illustration of a broad phenomenon referred to as al-
gorithmic discrimination. In this work, we assume the existence of
a boolean function(s) over user profile attributes, which identifies a
protected user group(s). This function can model juridical definitions
of protected demographics, or be any arbitrary boolean query over
multiple attributes.

As an example, consider a high-tech company interested in re-
cruiting researchers, opting for a social media campaign to inform
as many candidates as possible, through opinion leaders in the field.
Employing an IM algorithm may produce a campaign overlooking

a protected group of users, e.g., characterized by gender, age and/or
country. This latent, non-meritocratic discrimination harms both
potential candidates and the company, impeding the promotion of
a balanced environment and creating a vulnerability to discrimina-
tion lawsuits. With the pervasiveness of such automated processes,
these concerns have substantial economic and moral repercussions.

A related line of research is concerned with targeted IM algo-
rithms [10], which aim to find a seed set maximizing the influence
over users relevant to a given topic/context [9]. While these works
provide theoretical guarantees for this objective, they do not en-
sure that the overall influence is sufficiently large, compared to a
non-targeted IM algorithm. Continuing with our example, while
promoting the exposure to protected users is important, general
large exposure is still essential to identify the best candidates, and
is not guaranteed by existing targeted IM algorithms. Indeed, as we
show in this work, given a seed set size requirement, there exists
an inherent trade-off between the two objectives: (1) maximize the
overall influence and (2) maximize influence over protected users;
hindering a simultaneous optimization of both (see Section 2.2). This
trade-off produces a spectrum of different possible combinations
of emphases on each objective, with the particular choice being
application dependent, corresponding to different interpretations
of balance, fairness and diversity in the literature [3, 12, 13].

To the best of our knowledge, IM-Balanced is the first system
enabling users to declaratively specify the desired trade-off between
the two objectives. IM-Balanced allows users to specify the pro-
tected population and the notion of balance between the objectives
that they wish to achieve. Our algorithm ensures an efficient, scal-
able computation, while providing theoretical guarantees for the
proximity to the optimal solution in terms of both objectives. For
simplicity of presentation, we assume in the next sections a single
boolean function defining one protected group, but our definitions,
results and system apply to multiple functions corresponding to
possibly overlapping subsets of the populations.

The two key challenges that our system tackles are as follows.

Balanced IM. What is the correct trade-off between the objec-
tives? As the definition is arguably subjective and context depen-
dent, it requires a flexible, tunable system that enables to explicitly
manage this trade-off. IM-Balanced allows the user to prioritize
the objectives and transform one into a parametrized constraint.
For example, “Maximize the overall influence, while ensuring the
influence over protected users is above a given threshold", or, al-
ternatively, “Maximize the influence over protected users, while
ensuring the overall influenced is above a given threshold". That is,
IM-Balanced enables a tunable definition of balance (to be formally
defined in Section 2), where the user can declaratively specify: (1)
The required size of the seed set; (2) The protected group of users; (3)



The balancing criteria, which translates to customizable objective
and constraint functions, along with a size threshold parameter.

Efficiency and Scalability. State-of-the-art IM algorithms are the
product of decades of research focused on scalability, capable of
managing billion-node networks. A key challenge is, thus, to pro-
vide an algorithm on par with existing IM algorithms, in terms of
performance. Given a user specification, IM-Balanced generates
an algorithm instance suiting the user-defined notion of balance.
The generated instances employ existing IM algorithms as a white
box, with minor adaptations, thus supporting extensibility and
facilitating performance comparable with top performing IM algo-
rithms. IM-Balanced is also assured to satisfy the constraint while
providing theoretical guarantees for the objective.

Demonstration overview. We demonstrate the operation of IM-
Balanced through the reenactment of a real-life viral marketing
scenario, where the system is used to identify influential individuals
in the research community, for the purpose of recruiting researchers
for a high-tech company. For our illustration, influence is captured
in terms of citations and collaborations, inferred from a real-life
academic social network [1], and protected subpopulations are il-
lustratively defined in terms of various attributes such as gender
and nationality. We first present to the audience several examples
of subpopulations that are indeed neglected by standard IM algo-
rithms, alongside results obtained by our system, demonstrating the
advantages of our approach. Beyond the intended recruitment, the
obtained results will also allow us to highlight trends and patterns
in the research community, and, in particular, identifying isolated
demographics and unintended imbalances, along with suggesting
impactful focal points for a corrective campaign. The audience will
actively participate in the demonstration by selecting their desired
protected groups and composing various balance definitions, then
reviewing the results in contrast to those obtained by other baseline
approaches. See more details in Section 3.

2 TECHNICAL BACKGROUND
We start by providing a brief overview of the standard Influence
Maximization (IM) problem, then present our framework for Balanced-
IM. For space constraint, proofs and additional examples are de-
ferred to our technical report [5].

2.1 Influence Maximization
We first recall the definition of IM, then briefly overview its com-
plexity and its top performing algorithm schema. We model a social
network as a directed weighted graph G = (V ,E,W ), where V is
the set of nodes and each edge (u,v) ∈ E is associated with a weight
W (u,v) ∈ [0, 1], which models the probability that node u will in-
fluence its neighborv . Given a function I (·) dictating how influence
is propagated in the network and a number k , IM is the problem of
finding a seed set O = arдmaxT ⊆V , |T |=k I (T ), where I (T ) denotes
the expected number of nodes influenced by T . The function I (·) is
defined by an influence propagation model. The majority of existing
IM algorithms apply for the Independent Cascade (IC) and the Linear
Threshold (LT) models [2, 6], both proposed in [7]. Our results hold
under both models, but, for simplicity of presentation, we focus on
the IC model.

Figure 1: Example colored social network.

We refer to influenced nodes as covered. Initially only seed nodes
are covered. In the IC model the propagation is carried out in dis-
crete steps, s.t. each node covered in the preceding step attempts to
influence its uncovered neighbors, with an independent probability
indicated by the weight of the edge connecting them.

Selecting the optimal seed set isNP-hard, with inapproximability
beyond a factor of (1 − 1

e ) [7]. Recent IM algorithms, based on the
Reverse Influence Sampling (RIS) approach [2], achieve optimal
accuracy in near optimal time [11]. The RIS framework samples
nodes independently and uniformly, then for each sampled node,
constructs a Reverse Reachability (RR) set consisting of its sampled
sources of influence. Next, the problem is reduced to an instance of
the Maximum Coverage problem, where k nodes are selected with
the goal of maximizing the number of covered RR sets.

2.2 Balanced IM
As mentioned, our framework supports multiple (possibly overlap-
ping) protected groups, however, for simplicity, we assume here
a single such group. In our setting, nodes (users) are colored s.t. a
subset of users (blue nodes) belong to a protected group, with all
other users (red nodes) referred to as non-protected. For example,
Figure 1, depicts a sample colored network. Recall that I (S) denotes
the expected number of covered users by the seed set S , and let
Ir (S), Ib (S) denote the expected number of red/blue users covered
by S , resp. Additionally, let O denote the optimal k-size solution in
terms of cover size. For example, in Figure 1, for k = 2, O = {e,д},
I (O) = 4 12 , Ir (O) = 4 18 and Ib (O) =

3
8 . One can see that O covers

almost exclusively red users.
To obtain a more balanced solution, one may request that a

larger number of blue nodes should be covered. However, this
requirement alone, if not properly constrained, may lead to a drastic
decrease in the overall cover size, rendering the solution undesirable.
To illustrate, consider again Figure 1 with k = 2. As mentioned,
the size of the optimal solution in terms of cover size is I (O) =
4 12 and Ib (O) =

3
8 . Nonetheless, the optimal solution in terms of

covered blue nodes is B = {d, f }, where I (B) = Ib (B) = 2 and
Ir (B) = 0, which covers a greater number of blue nodes at the cost
of significantly reducing the overall cover.

This simple example exposes the inherent trade-off between
these two objectives, implying that instead of naively maximizing
both simultaneously, one should prioritize the objectives and trans-
form the secondary objective into a constraint strong enough to
ensure balance, but weak enough to provide a necessary degree
of freedom in optimizing the main objective. Towards this end,
IM-Balanced enables the user to specify: (1) The number k of seed
nodes; (2) The protected group of users; (3) The objective and the
constraint functions, and (4) The threshold parameter t ∈ [0, 1],
that restricts the extent to which the solution is allowed to deviate
from the optimum for the constraint.
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To illustrate, consider the following example definition of Bal-
anced IM, referred to as the protected-oriented definition: Given
the parameters k and t , find a seed set B∗ that maximizes the num-
ber of covered blue nodes, subject to a constraint on the overall
cover size being above the specified fraction of its optimal (possibly
unbalanced) maximal value. Namely,

B∗ = arдmax |T |=k, I (T )≥t ·(1− 1
e )·I (O )

Ib (T )

Recall that O is the optimal solution in terms of cover size. Note
that in the above formula the expected cover size of a given set is
compared to (1− 1

e )·I (O), rather than to I (O), since even for standard
IM, unless P = NP , no polynomial algorithm can guarantee a cover
size greater than (1 − 1

e ) · I (O) [7].
Similarly, one can choose to maximize the overall cover size, sub-

ject to the constraint that enough blue nodes are covered. We refer
to this definition as size-oriented. Namely, find a set O∗ satisfying:

O∗ = arдmax |T |=k, Ib (T )≥t ·(1− 1
e )·Ib (B)

I (T )

whereB is the optimalk-size solution in terms of covered blue nodes.
Here again, we compare Ib (T ) to (1− 1

e ) · Ib (B) rather than to Ib (B),
as we can prove that the same complexity bound mentioned above
holds for this variation as well. The user can similarly choose other
balance definitions that, e.g. constrain the number of covered red
nodes, enforce a minimal ratio of blue to red covered nodes, or add
constraints on the selected seed nodes.

2.3 Computing the Balanced IM solution
Given a user specification, IM-Balanced generates an algorithm in-
stance, suited for that notion of balance. As mentioned, the instance
employs, as a white-box, an existing RIS-based IM algorithm (e.g.,
[6, 11]). We start by shortly describing our generic modification of
a given IM algorithm, followed by our full solution scheme.

Protected-aware IM. Given an (RIS based) algorithm A, we de-
fine Ab to be its protected-aware version, i.e., while A maximizes
the overall cover size, Ab maximizes the number of covered blue
nodes exclusively. Any RIS-based algorithm can be adapted to its
protected-aware counterpart via a single modification: the RR sets
are sampled from blue nodes only. We can prove that Ab outputs
a solution covering at least (1 − 1

e ) · Ib (B) blue nodes, where B is
the optimal k-size solution maximizing Ib (·) [5]. Analogously, we
define Ar to be a variant of an IM algorithm A, which maximizes
the influence over the red nodes exclusively.

Generating a definition-dedicated algorithm instance. To ease the
presentation, we first illustrate the algorithm template generated for
the protected-oriented balance definition, then briefly explain how
this generalizes to support customizable alternative definitions.

The algorithm instance IM-Balanced generates for this definition
is depicted in Algorithm 1. It runs independently two procedures:
one ensures that the solution satisfies the constraint1 (line 3.1), and
the second maximizes the objective (line 3.2). It then returns the
union S of the selected seeds. If S contains less than k seeds, it runs
Ab on the residual problem to complete the seed set (lines 5-7).

Recall thatO∗ denotes thek-size optimal seed set for the protected-
oriented definition. We can prove that Algorithm 1 guarantees a

1The rounding operation (ceiling) ensures that the output satisfies the constraint and
the number of seeds algorithm A returns is an integer.

Algorithm 1 Algorithm instance for the protected-oriented bal-
ance definition.
1: Input: The parameters k and t and an algorithm A.
2: Output: A k-size solution S .
3: We run independently the following two procedures:

(1) S1 ← Run algorithm A with k ′ = ⌈t · k ⌉.
(2) S2 ← Run algorithm Ab with k ′ = ⌊(1 − t ) · k ⌋.

4: S ← S1 ∪ S2
5: if |S | < k then
6: Run Ab again until k seeds are gathered.
7: end if
8: return S

(1 − t) · (1 − 1
e )-approximation to the protected-oriented definition.

That is: Ib (S) ≥ (1 − t) · (1 − 1
e ) · Ib (O

∗) and I (S) ≥ t · (1 − 1
e ) · I (O).

Note that the time complexity of the algorithm depends on that of
A (we run A twice), which is nearly optimal [6, 11].

Finally, we conclude with a brief explanation of the algorithm
instances generated for other balance definitions. Conceptually,
given a balance definition, all that needs to be adjusted is the num-
ber of seeds required for each of the algorithms A, Ab and Ar .
For example, to comply with the size-oriented definition, we set
algorithmsA andAb to return ⌈(1−t) ·k⌉ and ⌊t ·k⌋ seeds, resp. As
another example, one may ask to maximize the number of covered
blue nodes, subject to a constraint on the number of covered red
nodes. To support this definition, we run Ab and Ar to return
⌈(1 − t) · k⌉ and ⌊t · k⌋ seeds resp. For more details see [5].

3 SYSTEM AND DEMONSTRATION
Implementation. IM-Balanced is implemented in Python 2.7. The

IM algorithm our prototype employs is IMM [11]. The user specifies
her balance definition via the UI (to be described next), implemented
in HTML5/CSS3, then the system runs our generic algorithm to
generate, and efficiently run, the suitable algorithm instance. The
results are displayed on a results page (also described next), along
with charts depicting various statistics. The user may examine and
compare results, and correspondingly refine her inquiry.

Demonstration. Asmentioned, we demonstrate the capabilities of
IM-Balanced through the reenactment of a real-life viral marketing
scenario, where the system is used for the advertisement of open
research positions in a high-tech company.

For our illustration, we have constructed an influence graph
based on a social network of researchers extracted from [1], fo-
cusing on the Database and Data Mining community. The profile
of a researcher, used to define the protected subpopulations, in-
cludes details about her gender, country, age, etc. The mutual in-
fluence relationships capture information on the researchers’ past
collaborations and citations (with weights reflecting the portion of
collaborations/citations between two authors).

In our first demonstration scenario, we assume (for the sake of
illustration) that the company wants to ensure that a large number
of researches are informed about the opening, while guaranteeing
that enough young female researchers are informed as well. Using
the system’s UI, as depicted in Figure 2a (from top to bottom),
CIKM participants will choose: (1) which part of the network to
consider (only the collaboration edges, only citations, or both); (2)
the properties of the protected group - here, females under 40 (the
cardinality of this group is displayed in real time); (3) the required
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(a) Balance definition builder. (b) Results page.
Figure 2: IM-Balanced UI.

seed set size k (the expected influence of a standard IM algorithm
for this k is also displayed); (4) a balance definition: the objective -
here, maximize the overall influence, and the constraint - the size
of the protected cover is at least 50% of the size of the optimal cover
of protected users (t = 0.5). Pressing the “Compute a balanced
solution" button, the system runs the instantiated algorithm. The
results page, as portrayed in Figure 2b, is then presented.

As one of the key objectives of this demonstration is to enable the
audience to gauge the effectiveness of IM-Balanced, the results are
displayed alongside those of previous IM algorithms that either fo-
cus solely on maximizing the overall influence [11] or alternatively
focus on the protected group alone (targeted-IM) [9]. To illustrate,
Figure 2b depicts such a comparison, showing that the solution re-
turned by IM-Balanced influences almost the same number of users
as the standard IM algorithm that focuses only on overall size (7, 076
vs. 9, 433), while influencing almost twice as many protected users.
We can see in the figure that IM-Balanced also comes very close
to the targeted-IM solution w.r.t. the influenced protected users
(2, 972 vs. 3, 302), while influencing overall significantly more users,
and thus is clearly more advantageous. Additionally, the selected
seeds (ordered alphabetically) of each algorithm are presented to
the participants, allowing for the discovery, for instance, of which
researches have significant influence on young women while at the
same time influencing the community at large (compared, e.g., to
those influencing mostly a large male population).

The audience will then be invited to formulate other balance
notions by tuning the protected group definition (e.g. researchers
form undeveloped countries) and the balance criteria (e.g. switch
between the objective and the constraint), and will examine how
these affect the results.

Finally, to have the audience further experience the system, we
will present to the participants other viral marketing tasks on this
network, such as calls for nominations for awards/grants applica-
tions. In each scenario, we will examine various protected popu-
lations which are neglected by standard IM algorithms, consider
several balancing criteria, and correspondingly examine how these
affect the selected seeds and the size/type of the influenced popula-
tions. Last, to demonstrate the robustness of IM-Balanced, inter-
ested participants will be further allowed to examine the system’s
operation on additional real-life social networks such as Pokec, a
popular social network in Slovakia and data extracted from Twitter
[8], whose graph datasets were also ported into the system.

4 RELATEDWORK
The study of algorithmic discrimination, fairness and diversity has
been gaining popularity in recent years. Work on fairness, with the
aim of remedying algorithmic bias against groups or individuals on
unreasonable grounds, focused largely on predictive tasks [12] and
ranking [3, 13].Diversity, i.e., ensuring that different kinds of objects
are represented in the output of an algorithm as opposed to similar
high-scoring results, has been studied in the context of search
engines and recommender systems [4]. Each of these concepts is
naturally subject to various context-dependent interpretations and
plays a different role in studying algorithmic imbalances, hence
the parametrization of our framework to accommodate a variety
of applications. Our definition of protected group generalizes the
definitions used in previous work [4, 13], by capturing both binary
and non-binary attributes of possibly overlapping subsets of users.

As mentioned, IM has been studied extensively, with emphasis
on scalable performance [6, 7]. IM-Balanced can employ any top
performing IM algorithm (e.g., [11]) in a white-box manner, match
its state-of-the-art performance and take advantage of all its op-
timizations (e.g., parallelized computation), while also retaining
theoretical accuracy guarantees.
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