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ABSTRACT

When analyzing large datasets, analysts are often interested in the
explanations for unexpected results produced by their queries. In
this work, we focus on aggregate SQL queries that expose correla-
tions in the data. A major challenge that hinders the interpretation
of such queries is confounding bias, which can lead to an unexpected
association between variables. For example, a SQL query computes
the average Covid-19 death rate in each country, may expose a
puzzling correlation between the country and the death rate. In this
work, we demonstrate NEXUS, a system that generates explana-
tions in terms of a set of potential confounding variables that explain
the unexpected correlation observed in a query. NEXUS mines can-
didate confounding variables from external sources since, in many
real-life scenarios, the explanations are not solely contained in the
input data. For instance,NEXUSmight extract data about factors ex-
plaining the association between countries and the Covid-19 death
rate, such as information about countries’ economies and health
outcomes. We will demonstrate the utility of NEXUS for investigat-
ing unexpected query results by interacting with the SIGMOD’23
participants, who will act as data analysts. Our code, datasets, tech-
nical report, and a short video of NEXUS are available at [2].
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1 INTRODUCTION

When analyzing large datasets, analysts often query their data to
extract insights. Oftentimes, there is a need to elaborate upon the
queries’ answers with additional information to assist analysts in
understanding unexpected results, especially for aggregate queries,
which are harder to interpret [12]. Aggregate SQL queries aggregate
an outcome attribute (𝑂) for some groups of interest indicated by a
grouping attribute, referred to as the exposure (𝑇 ).
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Figure 1: Visualization of the results of the query 𝑄 .

For example, consider Ann, an analyst in the WHO organization
who aims to understand the coronavirus pandemic for improved
policymaking. She examines a dataset containing information de-
scribing facts on Covid-19 spread in multiple cities worldwide, such
as the number of deaths-/recovered-/active-/new-cases in each city.
She evaluates the following query:

SELECT Country, avg(Deaths_per_100_cases)
FROM Covid-Data
GROUP BY Country

Here, the exposure is country and the outcome is deaths_per_100
_cases. A visualization of the query results is given in Figure 1. Ann
observes a puzzling correlation between the exposure and outcome.

While aggregate SQL queries expose correlations in the data, the
humanmind tends to interpret them as causal relationships. Namely,
Annwonders why the choice of country has such a substantial effect
on the death rate.

A major challenge that hinders the interpretation of aggregate
SQL queries is confounding bias [9] that can lead to a spurious
association between 𝑇 and 𝑂 and hence perplexing conclusions.
Confounding bias occurs when analysts try to determine the ef-
fect of an exposure on an outcome but unintentionally measure
the effect of another factor(s) (i.e., a confounding variable(s)) on the
outcome.We generate explanations in terms of a set of potential con-
founding variables that explain unexpected correlations observed
in query results. Namely, a set of attributes that can explain to Ann
the relationship between country and deaths_per_100_cases.

Our key observation is that, in many real-life scenarios, critical
confounding attributes might be found outside the narrow query
results that the analyst observes and the database being used. In our
example, information about critical factors that affect the Covid-19
death rate, such as countries’ health outcomes and economies, is
missing from the dataset Ann examines.
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To this end, we developedNEXUS (for oNEXplaining confoUnding
biaS), a system that provides explanations to unexpected correla-
tions observed in queries in terms of a subset of potential con-
founding attributes that explain the correlation. NEXUS searches
for candidate confounding attributes in large external data sources,
not only in the analyst’s original dataset.

In our example, the explanation generated by NEXUS to Ann is
the set of attributes Confirmed_cases (an attribute from the input
dataset), HDI1, and GDP (two attributes that were extracted from
external sources). Namely, Ann understands that these attributes
are potential confounding attributes that affect the Covid-19 death
rate and that the death rate is similar in countries with a similar
economy, health outcomes, and number of confirmed cases.

Our framework emphasizes identifying correlations without rely-
ing on any background knowledge. However, it is important for the
analyst to critically assess the proposed confounding variables and
conduct a thorough causal analysis, which may require additional
background knowledge, to establish causality.

NEXUS provides an interactive UI that allows analysts to ex-
amine the generated explanations (see Figure 3). For each selected
attribute, analysts may inspect its source and its individual contri-
bution to the explanation. We provide an easy-to-use query builder,
which allows analysts to query their data and view the results. Fur-
ther,NEXUS enables analysts to automatically identify unexplained
data subgroups in which, for them, generated explanations might
be insufficient.

NEXUS can extract candidate confounders from any knowledge
source (e.g., data lakes, knowledge graphs) as long as it can be (even
partially) integrated with the input data. For example,NEXUSmight
extract candidate attributes from a knowledge graph if some values
from the input dataset can be linked to their unique entities in the
knowledge graph. The knowledge source might be provided by the
analyst. We can potentially extract hundreds of attributes, many of
which might be irrelevant for explaining the correlation between
𝑇 and 𝑂 and contain many missing values (especially attributes
extracted from knowledge graphs where data is sparse). Thus, our
system needs an efficient algorithm to search for an explanation
(i.e., an attribute set) in this extensive search space and ensure the
generated explanation is robust to missing data. We, therefore, de-
veloped an efficient algorithm that avoids iterating over all attribute
subsets, and importantly, avoids estimating joint probabilities in high
dimensions, which is computationally difficult [10]. It also employs
a principled way of handling missing values, ensuring the gener-
ated explanations are robust to missing data. This work presents
NEXUS usability and its suitability for end-to-end deployment.

Related Work. Previous work provides explanations for trends
and anomalies in query results in terms of predicates on attributes
that are shared by one (group of) tuple in the results but not by
another (group of) tuple [3, 8, 11]. However, those methods do
not account for correlations among the exposure and outcome at-
tributes, and are thus inapplicable for explaining the correlation
between the outcome 𝑂 and the exposure 𝑇 . For example, using
such methods, Ann would not be able to discern confounding at-
tributes for the Covid-19 death rate because it requires attribute

1HDI is a statistic composite index of life expectancy, health outcome, and per capita
income indicators.

level (rather than a pattern level) analysis. HypDB [12] aims to
identify the direct causes of𝑇 to eliminate confounding bias. In this
sense, it identifies the most relevant attributes to 𝑇 and ignores 𝑂 .
This process has several limitations: (1) the causes of 𝑇 can only
be discovered from data under very strong assumptions. It is gen-
erally accepted that causal discovery should rely on background
knowledge and cannot be fully automated [6]. (2) it only works if all
causes of 𝑇 are observed in the data; (3) the proposed algorithm is
computationally prohibitive. In contrast, NEXUS does not claim to
discover causal relationships but rather aims to discover potential
confounding attributes that can explain the observed correlation,
while simultaneously considering both 𝑇 and 𝑂 . This could facil-
itate the process of identifying confounding variables for a more
thorough causal analysis. Moreover, our proposed framework is
computationally tractable. In our example, since the attributes HDI
and GDP are missing from the input data, HypDB would fail to
discover them. In case it was given with all extracted attributes,
HypDB could not operate on a dataset containing hundreds of
attributes as in our setting.

A recent work [5] suggested to augmented an input dataset
with openly available knowledge sources to contextualize the data.
However, this system seeks for generally relevant attributes to
be added to the data rather than to identify confounders that are
relevant for specific queries. Nevertheless, this tool can be used as
a complementary effort to extract attributes from external sources.

2 TECHNICAL BACKGROUND

We provide an overview of our theoretical foundations of the de-
velopment of NEXUS. Full details can be found in [2].

2.1 Data Model

The NEXUS system that we demonstrate manages a standard multi-
relational dataset D. To simplify the exposition, we assume D
consists of a single relational table. Our framework supports a
rich class of SQL queries that involve groping, joins, and different
aggregations. The queries we examine compare among subgroups,
investigating the association between an aggregated attribute 𝑂
(the outcome) and a grouping attribute𝑇 (the exposure). We call the
condition𝐶 (given by the WHERE clause) the context for the query.

NEXUS can extract attributes from any external source, such
as data lakes, or Knowledge Graphs (KGs), as long as it can be
integrated with the input dataset. In NEXUS the user may decide
which external data source NEXUS should use. Given a knowledge
source (e.g., domain-specific KG [13], publicly available KG [1]), we
extract a set of attributes E representing additional properties of
entities from D. Continuing with our example, E could be a set of
properties of countries, such as their area size, density, and HDI.

2.2 Problem Formulation

Let A denote the union of extracted attributes and attributes from
the input dataset. We aim to find an attribute set 𝑬⊆A that controls
the correlation between 𝑂 and 𝑇 , i.e. when conditioning on 𝑬 , the
correlation between 𝑂 and 𝑇 is diminished. We call such a set the
correlation explanation. Ideally, we look for a minimal-size set of
attributes 𝑬 s.t: (𝑂⊥⊥𝑇 |𝑬 ,𝐶). However, in practice, we may not find
such perfect explanations (that entirely explain the correlation).
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Hence we search for a set of attributes that minimizes the partial
correlation between 𝑇 and 𝑂 .

In our demonstration, the audience will be able to choose the
dataset to investigate (out of four options of commonly used datasets)
and specify the aggregate SQL query. NEXUS will use Conditional
Mutual Information (CMI), a commonmeasure of partial correlation,
to measure the dependence between 𝑇 and 𝑂 .

To assist analysts in interpreting the results, we enable them
to learn the individual responsibility of selected attributes. The
responsibility of an attribute is the normalized value of its individual
contribution (see Figure 3b).

2.3 Algorithms

Extracting the Attributes: Given a knowledge source, we use
existing tools to extract additional attributes that could be joined
with D. For example, we may extract attributes from a data lake,
leveraging existing methods to join an input table with other ta-
bles [4, 14]. For a KG, we may use an off-the-shelf Named Entity
Disambiguation algorithm (e.g., [16]) to map non-numerical values
that appear in D to their corresponding unique entities in the KG.

Extracted properties may be associated with multiple values.
Because correlation is only defined for sets of paired values, down-
stream applications typically aggregate the values into a single
number [14]. NEXUS supports any user-defined aggregation func-
tion (e.g., mean, sum, first). In our demonstration of NEXUS, the
audience will be able to choose the aggregation function to be used
out of four options.
Handling Missing Values: Attributes extracted from data often
have a high number of missing values. To address this issue, impu-
tation is a commonly used approach. However, as reported in [15],
imputing data can introduce bias and negatively affect the accuracy
of explanations. To mitigate this bias in the context of generating
explanations, we developed a method that utilizes Inverse Prob-
ability Weighting (IPW). IPW is a widely recognized method for
handling missing data, as described in [15].

To ensure the generated explanations are robust to missing data,
we define sufficient conditions to assure that probabilities used to
compute partial correlation are recoverable from data. For cases
where the probabilities are not recoverable, we employ a tailored
IPW-based solution. In our demonstration, participants will be
invited to examine extracted attributes suffering from selection bias
Generating the Explanation: There are potentially hundreds
of attributes that could be extracted from external sources. Thus,
NEXUS needs an efficient algorithm to search for an attribute set
(i.e., explanation) in this extensive search space. The key advantages
of our proposed algorithm are that it avoids iterating over all possible
attribute sets, and it avoids estimating CMI for high-dimensional
conditioning sets, which is computationally difficult [10].

In a nutshell, our algorithm incrementally selects attributes based
on their individual contribution (measured by CMI with 𝑇 and 𝑂),
and their redundancy w.r.t. previously selected attributes (measured
by their mutual information with previously selected attributes).
We then define a stopping criterion, allowing the algorithm to stop
when no further improvement is found. Last, we propose multiple
pruning optimizations to speed up the computation.

Attribute Extractor Data Organizer

Explanation 
Generator

A Query Q
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Figure 2: The architecture of NEXUS.

Identifying Unexplained Data Groups: NEXUS finds the expla-
nations for the correlation between 𝑇 and 𝑂 . While the generated
explanations are optimal considering the whole data, they may be
insufficient for some data groups (defined by a set of attribute-value
assignments and correspond to refinements of the query 𝑄). We
thus propose an algorithm the analyst may use after getting the
explanation to identify unexplained data subgroups. This algorithm
outputs the top-𝑘 (in terms of size) largest data groups for which
the generated explanation might be insufficient. Our algorithm ex-
ploits the notion of pattern graph. Intuitively, the set of all query
refinements can be represented as a graph. We traverse this graph
in a top-down fashion while generating each node at most once
and using a max heap to iterate over the data groups by their size.

3 SYSTEM AND DEMONSTRATION

We implemented NEXUS using Python and Flask. Our code and
datasets are available at [2]. In our prototype implementation, we
used the DBPedia KG [1] for attribute extraction.

System overview. As shown in Figure 2, NEXUS contains a UI
(depicted in Figure 3) and four major components. The analyst pro-
vides a dataset D and specifies a query 𝑄 . The Attribute Extractor
extracts attributes from a KG, yielding an augmented dataset D ′.
The Data Organizer receives D, prunes irrelevant attributes (at-
tributes with low information content), and detects and handles
selection bias. The Explanation Generator finds the explanation 𝑬
for 𝑄 . It then passes 𝑬 to the Unexplained Data Groups Genera-
tor, which identifies the top-𝑘 largest unexplained data groups G.
Last, the analyst receives t𝑬 and G. She may further use NEXUS to
generate explanations for groups in G as well.

3.1 Demonstration Overview

We demonstrate the operation of NEXUS over four datasets, which
include attributes that can be linked to entities in DBPedia:
Covid-19 : This dataset includes information such as the number

of confirmed, deaths, and new cases across the globe. The
countries’ names were used for attribute extractions.

SO : Stack Overflow’s annual survey contains information about
people who code, such as their age, income, and country. The
countries’ names were used for attribute extractions.

Flights : This dataset contains transportation statistics of domestic
flights in the USA. The city, state, and air carrier attributes
were used for attribute extractions.

Forbes : This dataset contains the annual earnings and category
of celebrities in multiple years. The celebrities’ names were
used for attribute extraction.
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(a) Example queries suffering from confounding bias (Flights). (b) The explanation generated by NEXUS for the first query.

Figure 3: UI of NEXUS.

The participants will play the role of data analysts, attempting to
explain unexpected correlations observed in aggregate SQL queries.
We start the demonstration by allowing attendees to select the
underlying dataset to investigate. The audience then engages with
NEXUS via the following scenarios:
Investigating real-life queries: To illustrate the capabilities and us-
ability of NEXUS and for the sake of demonstration, the audience
will investigate real-life queries suffering from confounding bias.
These queries are inspired by real-life sources, such SO annual re-
ports, media websites (e.g., Vanity Fair, USA Today), and academic
papers [7]. For each dataset, NEXUS presents a list of queries with
their results visualizations (as depicted in Figure 3a for the Flights
dataset). By clicking on the Explain button to the right of each
query, NEXUS displays its explanation (as shown in Figure 3b). For
instance, for a query compares the average departure delay among
cities in the US, NEXUS generates an explanation consisting of the
attributes: Precipitation Days, Year UV, and Airline, implying
that in cities with similar weather and distribution of flights op-
erated by the same airline carriers, the departure delay is similar.
The analyst can further inspect the source of each attribute (e.g.,
DBPedia is the source of Year UV). By clicking on the Identify
Groups button, NEXUS enables one to examine the top-5 (in terms
of size) largest unexplained data groups. For instance, for cities in
California, a better explanation for departure delay is the attributes
Population Density and Security Delay.
Manually-defined queries: The participants would be invited to
insert their own queries by clicking on the Add Query button (see
the bottom part of Figure 3a). The audience specifies their queries
using the system Input Builder (omitted from the presentation for
space limitations). NEXUS then adds the user-defined query to the
repository of queries associated with the selected dataset (to allow
other participants to explore them as well). The audience could
then inspect the generated explanations and investigate them by
exploring the unexplained data groups. This scenario simulates
a common real-life task where a data analyst tries to explain the
unexpected results of an aggregate SQL query.
Looking under the hood: Interested participants will be invited to
examine how system parameters affect quality and performance.
For example, the audience will be allowed to vary the percentage
of observed values in extracted attributes to learn how the system

handles missing values and ensures the explanations are robust
to missing data. Further, the audience will be invited to examine
the efficiency of our algorithms. For example, we will show that
while the explanations generated by our algorithm are similar to
those of the naïve approach that iterates over all attribute sets and
those generated using HypeDB [12], our algorithm is at least one
order of magnitude faster than both of these baselines. We will also
show that the difference in running times between the algorithms
increases as the number of extracted attributes increases.
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