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Abstract—When analyzing large datasets, analysts are often
interested in the explanations for unexpected results produced by
their queries. In this work, we focus on aggregate SQL queries
that expose correlations in the data. A major challenge that hin-
ders the interpretation of such queries is confounding bias, which
can lead to an unexpected correlation. We generate explanations
in terms of a set of potential confounding variables that explain the
unexpected correlation observed in a query. We propose to mine
candidate confounding variables from external sources since, in
many real-life scenarios, the explanations are not solely contained
in the input data. We present an efficient algorithm that finds
a concise subset of attributes (mined from external sources and
the input dataset) that explain the unexpected correlation. This
algorithm is embodied in a system called MESA. We demonstrate
experimentally over multiple real-life datasets and through a
user study that our approach generates insightful explanations,
outperforming existing methods even when are given with the
extracted attributes. We further demonstrate the robustness of
our system to missing data and the ability of MESA to handle
input datasets containing millions of tuples and an extensive
search space of candidate confounding attributes.

I. INTRODUCTION

When analyzing large datasets, analysts often query their
data to extract insights. Oftentimes, there is a need to elaborate
upon the queries’ answers with additional information to assist
analysts in understanding unexpected results, especially for
aggregate queries, which are harder to interpret [1], [2]. While
aggregate query results expose correlations in the data, the
human mind cannot avoid a causal interpretation. Thus, we
provide explanations for unexpected correlations observed in
aggregate queries using causation terms.

In this work, we focus on SQL queries that are aggregating
an outcome attribute (O) based on some groups of interest
indicated by a grouping attribute, referred to as the exposure
(T ) [3]. A major challenge that hinders the interpretation
of such queries is confounding bias [4] that can lead to a
spurious association between T and O and hence perplexing
conclusions. Confounding bias occurs when analysts try to
determine the effect of an exposure on an outcome but
unintentionally measures the effect of another factor(s) (i.e.,
a confounding variable(s)) on the outcome. This results in
a distortion of the actual association between T and O [3].
We are interested in generating explanations in terms of a set
of confounding attributes that explain unexpected correlations
observed in query results.

A key observation that guides this work is that in many
cases, uncontrolled confounding variables might be found
outside the narrow query results that the analyst observes and

the database being used. Thus, there is a need to develop
automated solutions that can explain unexpected correlations
to analysts, which goes beyond just the data accessed by the
query. To illustrate, consider the following example.

Example 1.1: Ann is an analyst in the WHO organiza-
tion who aims to understand the coronavirus pandemic for
improved policymaking. She examines a dataset containing
information describing Covid-19-related facts in multiple cities
worldwide. It consists of the number of deaths-/recovered-
/active-/new- per-100-cases in each city. Ann evaluates the
following query over this dataset:

SELECT Country, avg(Deaths_per_100_cases)
FROM Covid-Data
GROUP BY Country

A visualization of the query results is given in Figure
1. Here, the exposure is COUNTRY and the outcome is
DEATHS PER 100 CASES. Ann observes a puzzling correla-
tion between the exposure and outcome; namely, she wonders
why the choice of the country has such a substantial effect on
the death rate. She is interested in finding a set of confound-
ing variables that explain this association. She sees that the
attribute CONFIRMED CASES from COVID-DATA is correlated
with DEATHS PER 100 CASES. However, this attribute alone
is not enough to explain the correlation. For example, while
Germany had the fifth-most confirmed cases worldwide, it
had only a fraction of the death toll in other countries. Ann
understands that other factors (that are not in the data) affect
this association. She remembers reading in the news that as
a country’s success (defined by multiple variables, including
GDP1 and HDI2) grows, the death rate decreases [5], [6].
However, such properties of countries are not available in her
data but could be extracted from external sources.

We propose to mine candidate confounding attributes from
external sources. In general, our framework can extract can-
didate confounders from any knowledge source (e.g., related
tables, data lakes) as long as it can be integrated with the
input data. This paper focuses on mining attributes from a
Knowledge Graph (KG) for the following reasons. KGs can
effectively organize and represent a large amount of data
[7]–[9]. KGs have been efficiently utilized in various tasks,
such as question-answering and recommendation [10]. Further,
attribute names in KGs are typically highly informative, allow-
ing analysts to reason about generated explanations. However,

1Gross domestic product (GDP) is the monetary value of all goods and
services made within a country during a specific period.

2The Human Development Index (HDI) is a statistic composite index of
life expectancy, health outcome, and per capita income indicators.
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Figure 1: Visualization of the results of the query Q.

the sheer breadth of coverage that makes KGs potentially valu-
able also creates the need to automate the process of mining
relevant confounding variables. There are multiple general-
purpose and domain-specific KGs that store data collected
from multiple sources. We argue that such data could be
utilized for explaining unexpected correlations observed in
user queries in a wide range of scenarios.

To this end, we present an efficient algorithm that finds a
subset of potential confounding attributes (mined from external
sources and from the input dataset) that explain unexpected
correlations observed in user queries. We note that our al-
gorithm does not rely on any background knowledge and is
focused on identifying correlations. It is up to the analyst
to examine the validity of the recommended confounding
attributes and conduct a more thorough causal analysis to
establish causation. This algorithm is embodied in a system
called MESA, which automatically mines candidate attributes
from a given knowledge source.

Example 1.2: Ann uses MESA to search for an explanation
for her query. MESA mines all available attributes about
countries that appear in her data from DBpedia. She learns that
besides CONFIRMED CASES, the attributes HDI, and GDP are
potential confounding attributes. She sees that the death rate is
similar in countries with a similar number of confirmed cases,
HDI, and GDP. She is pleased because she found a plausible
real-world explanation for her query results [5], [6].

Previous work provides explanations for trends and anoma-
lies in query results in terms of predicates on attributes that
are shared by one (group of) tuple in the results but not by
another (group of) tuple [11]–[15]. However, those methods do
not account for correlations among attributes and are thus in-
applicable for explaining unexpected correlations. HypDB [1]
aims to identify the direct causes of the exposure attribute
T and adjust for them in order to eliminate confounding
bias. In this sense, it considers the most relevant attributes
to T and ignores the outcome attribute O altogether. Further,
HypDB relies on very strong assumptions about the underlying
causal model that are often impractical, and the algorithm for
parent discovery is computationally prohibitive. We share with
CajaDE [12] the motivation of considering explanations that
are not solely drawn from the input table. CajaDE generates
insightful explanations based on contextual information mined
from tables related to the table accessed by the query. Their

explanations are a set of patterns that are unevenly distributed
among T , and are independent of O. Thus, CajaDE may
generate explanations that are irrelevant to understanding the
correlation between T and O.

Our framework supports a rich class of aggregate SQL
queries that compare among subgroups, investigating the
relationship between the outcome and grouping attributes.
To explain the correlation between T and O observed in
the results of a query Q, we formalize the CORRELATION-
EXPLANATION problem that seeks a set of potential confound-
ing attributes, which minimizes the partial correlation between
T and O (to measure the correlation between T and O, while
controlling for the effect of confounding variables). Further,
MESA enables analysts to learn the individual responsibility
of selected attributes and to automatically identify unexplained
data subgroups (correspond to refinements of Q) for which the
generated explanation might be insufficient.

Given an input database D and a knowledge source, we
extract attributes representing additional properties of entities
from D. The attributes are extracted only after the query
arrives (as the knowledge source may be a part of the in-
put). Extracted attributes may contain many missing values,
especially ones extracted from a KG where data is sparse.
Previous work showed that common approaches for handling
missing data could cause substantial selection bias [16] (which
occurs when the obtained data fails to properly represent the
population intended to be analyzed) if many values are miss-
ing [16]. In contrast to prediction, the quality of explanations
is more sensitive to missing data [17]. We, therefore, present
a principled way of handling missing values, ensuring the
explanations are robust to missing data. We provide sufficient
conditions to detect selection bias and an algorithmic approach
to handle it properly.

There are potentially hundreds of attributes that could be ex-
tracted from external sources. Thus, there is a need to develop
an efficient algorithm to search for the optimal attribute set
(i.e., explanation) in this extensive search space. Further, the
search for the optimal attribute set involves estimating partial
correlation for high-dimensional conditioning sets, which is
notoriously difficult [18]. To this end, we propose the MCIMR
algorithm, a highly efficient algorithm which does not require
iterating over all possible attribute sets, and avoids estimating
high-dimensional conditioning sets. It selects attributes based
on Min-Conditional-mutual-Information (a common measure
for partial correlation) and Min-Redundancy criteria. We prove
that if the size of the optimal solution k is given, it finds the
optimal k-size solution. However, in practice, k is unknown.
We thus define a heuristic stopping criterion, allowing the
algorithm to stop when no further improvement is found.

We conduct an experimental study based on four commonly
used datasets that evaluate the quality and efficiency of our
algorithm. Our approach is effective whenever the explanation
can be found in a given knowledge source. We show that
this was the case in 72.5% of random aggregate queries
evaluated on these datasets, using the DBPedia KG [19] for
attribute extraction. For quality evaluation, we focus on 14



representative queries suffering from confounding bias. These
queries are inspired by real-life analysis reports, such as Stack
Overflow annual reports [20] and academic papers [5]. We
ran a user study to evaluate the quality of our explanations
compared with seven approaches. We show that the expla-
nations generated by MCIMR are almost as good as those
of a computationally infeasible brute-force method and are
much better than those of feasible competitors. We also show
that previous findings in each domain support our substantive
explanations. Our experiments demonstrate the robustness of
our solution to missing data and indicate the effectiveness
of our algorithm in finding explanations in less than 10s for
queries evaluated on datasets containing more than 5M tuples.

Our main contributions are summarized as follows:
• We formalize the CORRELATION-EXPLANATION problem
that seeks a subset of attributes that explains unexpected
correlations observed in SQL queries (Section II).
• We propose to extract unobserved confounding attributes
from external sources and focus on KGs. We develop a
principled way to avoid selection bias (Section III).
• We devise an efficient algorithm for the CORRELATION-
EXPLANATION problem. We embody this algorithm in a
system called MESA which enables analysts to automatically
identify unexplained data groups (Section IV).
• We qualitatively evaluated the generated explanations over
real-life datasets through a user study. We further conducted
performance experiments to assess scalability (Section V).

Related work is presented in Section VI and we conclude
in Section VII. All proofs are deferred to [21].

II. MODEL AND PROBLEM FORMULATION

A. Data Model

We operate on a standard multi-relational dataset D. To
simplify the exposition, we assume D consists of a single
relational table. However, our definitions and results apply to
the general case. The table’s attributes are denoted by T . We
use bold letters for sets of attributes T⊆T . We expect the
reader is familiar with basic information theory measures, such
as entropy and conditional mutual information. Our framework
supports a rich class of SQL queries that involve groping,
joins and different aggregations to support complex real-world
scenarios. The queries we examine compare among subgroups,
investigating the relationship between an aggregated attribute
O (the outcome) and a grouping attribute T (the exposure). To
simplify the exposition, we assume a single grouping attribute.
However, our results can be naturally generalized for multiple
grouping attributes. We call the condition C (given by the
WHERE clause) the context for the query.

We use the following example based on the Stack Overflow
(SO) dataset throughout this paper.

Example 2.1: SO dataset contains information about people
who code around the world, such as their age, income, and
country. Consider the following query:

SELECT Country, avg(Salary)
FROM SO
WHERE Continent = Europe
GROUP BY Country

Here, O is SALARY, T is COUNTRY, the context C is
CONTINENT = EUROPE, and the aggregation function is
average. We aim to explain the difference in the average
salary of developers from each country in Europe. While some
attributes from SO may partially explain this (e.g., GENDER,
DEVTYPE), other important attributes that can cast light on
this difference cannot be found in this dataset.

Knowledge Extraction. In general, MESA can extract at-
tributes from any external source, such as related tables, data
lakes, or Knowledge Graphs (KGs), as long as it can be
integrated with the input dataset. This paper focuses on mining
attributes from a KG. KGs can effectively organize a large
amount of (domain-specific or general) data, and have been
successfully utilized in various downstream applications, such
as question-answering systems, search engines, and recom-
mendation systems [10]. One of the strengths of KGs is that
most of the attributes are already reconciled. Namely, we
will not have to match different versions of attributes across
different entities. Further, attribute names are typically highly
informative, allowing analysts to reason about the generated
explanations. Extracting attributes from other sources poses a
series of additional challenges, including handling many-to-
many relations and uninformative attribute names. We leave
these extensions for future research.

To ensure the knowledge source is relevant for a given
dataset, MESA allows the analyst to decide which source to
use for attribute extraction. Given a knowledge source (e.g.,
domain-specific KG [22], [23], publicly available KG [19],
[24], [25]), we extract a set of attributes E representing
additional properties of entities from D.

Continuing with our example, E could be a set of properties
of countries extracted from a KG, such as their density and
HDI. We can potentially join E and T , by linking values
from T with their corresponding entities in the KG that were
used for attributes extraction. However, E may contain many
attributes, most of which are irrelevant for explaining the
observed correlation.

B. Problem Formulation
Given a query, the analyst observes an unexpected cor-

relation between the exposure T and the outcome O. We
assume there is confounding bias that causes a spurious
association between T and O. Confounding bias is a system-
atic error due to the uneven or unbalanced distribution of a
third variable(s), known as the confounding variable(s) in the
competing groups. Uncontrolled confounding variables lead to
an inaccurate estimate of the true association between T and
O. Our goal is to discover potential confounding variables.
Let A denote E∪T \{O, T}, referred to as the candidate
attributes. We search for an attribute set E⊆A that control
the correlation between O and T , i.e., when conditioning on
E, the correlation between O and T is diminished. We call
such a set the explanation.



Example 2.2: It is very likely that countries’ economic
features (such as GDP, and Gini) affect developers’ salaries.
To unearth the association between COUNTRY and SALARY,
one must measure the correlation while controlling for such
attributes. This will allow analysts to understand which fac-
tors affect the differences in developers’ salaries. Intuitively,
we expect the average developers’ salaries to be similar in
countries with similar economic characteristics.

Ideally, we look for a minimal-size set of attributes E⊆A
s.t: (O⊥⊥T |E, C). However, in practice, we may not find such
perfect explanations (that entirely explains the correlation),
hence we search for a minimal-size set of attributes that
minimizes the partial correlation between T and O. Partial
correlation measures the strength of a relationship between two
variables, while controlling for the effect of other variables.
A common measure of partial correlation is multiple linear
regression, which is sensitive only to linear relationship. Other
partial correlation measures, such as Spearman’s coefficient,
are more sensitive to nonlinear relationships [26], [27]. Here
we use Conditional Mutual Information (CMI), a common
measure of the mutual dependence between two variables,
given the value of a third. We chose CMI because (1) it
is a widely used non-parametric measure for partial correla-
tion [28], (2) there is a plethora of techniques for estimating
it from data [1], (3) it allows us to develop information-
theoretic optimizations. CMI may suffer from underestimation,
especially when quantifying dependencies among variables
with high associations [29]. However, we avoid such cases
since, as we explain in Section IV-B, we discard all at-
tributes that are logically dependent on T or O. Note that
(O⊥⊥T |E, C) holds iff I(O;T |E, C)=0, where I(O;T |E, C)
is the mutual information of O and T while conditioning on
E. We formalize the CORRELATION-EXPLANATION problem
as follows:

Definition 2.1 (CORRELATION-EXPLANATION): Given a
set of candidate attributes A and a query Q, find a set of
attributes E∗ s.t.: E∗ = argminE⊆AI(O;T |E, C)·|E|.

Following previous work [14], [30], [31], besides the ex-
planatory power, we also consider the cardinality of the sets.
To combine these two objectives, we multiply the explanatory
power by the cardinality of the attribute set. While other
aggregation functions could also be used, our approach is
invariant to a particular choice of the aggregation function.

We assume A does not contain attributes that have logical
dependencies with T or O. This reflects a common assumption
in causal inference that the underlying distribution is strictly
positive. In Section IV-B we explain how we discard such
attributes from consideration.

Example 2.3: Among other attributes, we extracted from
a KG the GINI (E1), DENSITY (E2), and HDI (E3) at-
tributes. An attribute from SO is the developers GENDER
(E4). According to our data, we have I(O;T |C)=2.6. When
conditioning on E1, we get: I(O;T |C,E1)=1.3. Namely, in
countries with a similar Gini index, there is less correlation
between the country of developers and their salaries. When
also considering DENSITY, we get: I(O;T |C,E1, E2)=0.03.

Thus, this set of attributes explains away the correlation in
Qso. When conditioning on HDI, on the other hand, we get:
I(O;T |C,E3)=2.5. Since the HDI of countries in Europe is
similar, this attribute does not explain the observed correlation.

We enable analysts to learn the individual responsibility
of selected attributes. Given an explanation E, we rank the
attributes in E in terms of their responsibilities as follows:

Definition 2.2 (Degree of responsibility): Given a query Q
and set of attributes E, the degree of responsibility of an
attribute Ei∈E is defined as follows:

Resp(Ei) :=
I(O;T |E\{Ei}, C)− I(O;T |E, C)∑

Ej∈E(I(O;T |E\{Ej}, C)− I(O;T |E, C))

The responsibility of an attribute Ei is the normalized value of
its individual contribution. When all attributes in E contribute
to the explanations (i.e., the numerator is positive), the denom-
inator is non-negative. The responsibility of Ei is positive if Ei

contributes to the explanation. Thus, a negative responsibility
indicates that adding Ei only harms the explanation (it happens
since Ei has negative interaction information with O and T ).
The higher the responsibility of an attribute, the greater its
individual explanatory power.

Example 2.4: Recall that E1= GINI, and E2= DEN-
SITY. Let E={E1, E2}. According to our data we
have: I(O;T |C,E2)=1.51. We get: Resp(E1)=0.54, and
Resp(E2)=0.46. The attribute HOBBY (E5) indicates whether
a developer is coding as a hobby. It has a negative interaction
information with O and T . We have I(O;T |C,E5)=2.7
>I(O;T |C). Let E={E1, E5}. We get: I(O;T |C,E)=1.5,
Resp(E1)=1.2, and Resp(E5)= − 0.2. Since E5 did not
contribute to the explanation, its responsibility is negative.

The Shapley value [32] is a game-theoretic concept that
has recently been shown to be useful in explaining complex
data-intensive computations, such as query results and model
performance [33]–[38]. Our responsibility scores can be com-
bined with Shapley values to account for interactions between
attributes. Specifically, the responsibility score can be used to
quantify the contribution of an attribute in a particular coalition
(an attribute subset). However, computing Shapley values is
generally intractable [35], [39]. While this is not the focus
of the current work, extending the responsibility scores with
Shapley values or similar metrics is an interesting direction
for future research.

Key Assumption. We generally believe that attributes with
low responsibility are of little interest to analysts and that
XOR-like explanations (in which the explanation power of
each individual attribute is low, but their combination makes
a good explanation) are hard to understand; thus, they are
less likely to be considered good explanations. Our view is
motivated by [40]. A similar assumption is often made in
feature selection [41], [42], where they assume the optimal
feature set does not contain multivariate associations among
features, which are individually irrelevant to a target class
but become relevant in the presence of others. We further
believe true XOR phenomena are likely to be uncommon in
real datasets; the practical success of feature selection methods



that make this assumption [28] is some evidence for this view.
Further, generating XOR explanations would be a substantial
additional technical challenge. It would eliminate our ability to
prune low-relevance attributes and define a stopping criterion
for our algorithm.

III. ATTRIBUTES EXTRACTION

A. Extracting the Candidate Attributes

MESA extracts attributes representing additional properties
of entities from D from a given knowledge source. In general,
we may extract attributes from any given source as long as it
can be integrated with D (e.g., we may extract attributes from
a data lake, leveraging existing methods to join an input table
with other tables [27], [43]–[46]. As mentioned in Section
II-A, here we focus on extracting attributes from a given KG.

Extracting Attributes from a KG: Given a KG, the first
step is to map values that appear in T to their corresponding
unique entities in the KG G. This task is often referred to as the
Named Entity Disambiguation (NED) problem [47]. We can
use any off-the-shelf NED algorithm (e.g., [47], [48]) to match
any non-numerical value in T to an entity in G. Next, given
an entity from T , we extract all of its properties from G. We
then organize all the extracted properties into a table, setting
a null value to all properties whose values were missing. This
process is equivalent to building the universal relation [49]
out of all of the entity specific relations that were derived
from G. To extract more attributes and potentially improve the
explanations, one may ”follow” links in G. Namely, extract
also properties of values which are entities in G as well. This
process can be done up to any number of hops in G. All
properties are then flattened and stored as a single table.

Accommodating One-to-Many Relations: The process
described above assumes that each entity is associated with a
single value. However, real-world data often contain multiple
categorical values (see Example 3.1). Because correlation is
only defined for sets of paired values, downstream applications
typically aggregate the values into a single number [46].
MESA supports any user-defined function (e.g., mean, sum,
max, first) to perform the aggregation.

Example 3.1: A country’s leader is an attribute extracted for
each country. We can extract properties of the leaders, such as
their age and gender, adding to E additional properties such
as LEADER AGE, and LEADER GENDER. Other properties
may point to multiple entities. The US entity has the property
ETHNIC-GROUP, which points to different ethnic groups. Each
ethnic group is also an entity, and has the property POPULA-
TION SIZE. One may add the property AVG POPULATION SIZE
OF ETHNIC-GROUP to E by averaging the population sizes.

B. Handling Missing Data

Extracted attributes, especially ones from KGs where data
is sparse, may contain missing values. Our goal is to develop
a principled approach to ensure the generated explanations are
robust to missing data. Handling missing data is an enduring
problem for many systems [50]. The simplest approach to deal-
ing with missing values is to restrict the analysis to complete

cases, i.e., discard cases that have missing values.However,
this can induce selection bias if the excluded tuples are
systematically different from those included. For example, if
the HDI values of only countries with a very high HDI are
missing, restricting the analysis only to complete cases may
lead to misleading explanations. A common solution is to
impute missing values. Data imputation is unlikely to cause
substantial bias if few data are missing, but bias may increase
as the number of missing data increases [16]. The approach
that we followed is Inverse Probability Weighting (IPW), a
commonly used method to correct selection bias [16]. In IPW,
we consider only complete cases, but more weight is given
to some complete cases than others. We next explain how to
adapt IPW into our setting.

For simplicity of presentation, we assume that T and E
have been joined into a single table. As we will explain in
Section IV, for an attribute E∈E we estimate I(O;T |E,C)
and I(E;E′) for E′∈E . Therefore, we need to recover the
probabilities P (O|C,E), P (O|C, T,E), P (E), and P (E|E′).
But since E may contain missing values, we must ensure that
those probabilities are recoverable. Given an attribute E, let
RE denote a selection attribute that indicates if the values
of E for the i-th tuple in the results of Q is missing. I.e.,
RE [i]=1 if the value of E for the i-th tuple was extracted,
and RE [i]=0 otherwise. A complete cases analysis means
that we examine only cases in which RE [i]=1. Let RE=1
denote the selection of all tuples in which for them RE [i]=1
holds. We say the probability of an event X which involves
E (e.g., P (O|E)) is recoverable if: P (X)=P (X|RE=1). We
next provide sufficient conditions to ensure recoverability.

We prove that I(O;T |C,E) is recoverable if the complete
cases are a representative sample of the original data, and
each complete case is a random sample from the population
of individuals with the same E and T values.

Proposition 3.1: If (O ⊥⊥ RE = 1|E,C) and (O ⊥⊥ RE =
1|E, T,C), then I(O;T |C,E) is recoverable.

We prove I(E;E′) is recoverable if the completeness of a
case is independent of E, and remains independent given E′.

Proposition 3.2: If (Ei⊥⊥REi
=1, REj

=1) and
(Ei⊥⊥REi=1, REj=1|Ej), then I(E;E′) is recoverable.

In situations other than those described above, the proba-
bilities will generally not be recoverable. Following the IPW
approach, we assign weights to complete cases, where the
weight of an event X is defined as P (RE=1)/P (RE=1|X).
However, since E contains missing values, P (X) is unknown.
We thus estimate P (X). Commonly, a logistic regression
model is fitted [51], [52]. Data available for this are the values
in D. We employ a logistic regression to estimate P (X). Note
that while this is similar to data imputation, we use existing
values for prediction but only predict the weights of existing
values, rather than predicting missing values.

IV. ALGORITHMS

A. The MCIMR Algorithm

We present the MCIMR algorithm for the CORRELATION-
EXPLANATION problem. Its key advantages are that it avoids



iterating over all possible attribute sets, and it avoids esti-
mating CMI for high-dimensional conditioning attribute sets,
which is computationally difficult [53]. However, it does not
necessarily outputs the optimal solution to the CORRELATION-
EXPLANATION problem. Nevertheless, our experimental study
uses real-life datasets and scenarios demonstrates that this
algorithm is highly efficient and useful in practice.

Estimating CMI of high-dimensional conditioning sets re-
quires estimating multivariate probability in high dimensions.
It is often hard to get an accurate estimation for multivariate
probability because of the following difficulties in the high-
dimensional space. First, the number of tuples in the dataset
is often insufficient to do it accurately. Second, multivariate
density estimation often involves computing the inverse of the
the high-dimensional covariance matrix, which is typically an
ill-posed problem [53]. These problems are more acute for
continuous attributes. However, even for discrete attributes,
the practical problems in estimating high-dimensional joint
probabilities cannot be fully avoided [53].

Our algorithm, therefore, avoids iterating over all possible
attribute sets and calculates only bivariate probabilities, which
is much more accurate. We do so by incrementally selecting
attributes based on Minimal-Conditional-mutual-Information
(MCI) and Minimal-Redundancy (MR) criteria.

We begin by assuming that the size of the optimal solution
k is known and show that MCIMR yields the optimal k-size
solution in this case. We then remove this assumption and
propose a heuristic criterion to stop the algorithm.

For a fixed k, the CORRELATION-EXPLANATION problem
becomes finding a k-size attribute set Ek such that:

Ek = argminE⊆A,|E|=kI(O;T |C,E) (1)

Obviously, when k equals 1, the solution is the attribute E that
minimizes I(O;T |C,E). When k>1, a simple incremental
solution is to add one attribute at one time: given the set with
k−1 attributes, Ek−1, the k-th attribute to be added can be
determined as the one that contributes to the largest decrease
of I(O;T |C,Ek−1).

Importantly, note that we cannot directly compute Equa-
tion 1. Instead, we show that the combination of the Min-
Conditional-mutual-Information (MCI) and Min-Redundancy
(MR) criteria is equivalent to Equation 1 if one feature is
selected at each iteration.

The idea behind MCI is to search a k-size attribute set
Ek that satisfies Equation 2, which approximates Equation 1
with the mean value of all CMI values between the individual
attributes in Ek and O and T :

Ek = argminEk⊆A,|Ek|=kMCI(O, T,C,Ek) (2)

where MCI(O, T,C,Ek)=
1
k

∑
E∈Ek

I(O;T |C,E).
However, it is likely that attributes selected according to

MCI are redundant. Thus, the following minimal redundancy
condition is added:

Ek = argminEk⊆A,|Ek|=kMR(Ek) (3)

where MR(Ek) =
1
k2

∑
Ei,Ej∈Ek

I(Ei;Ej).

Algorithm 1: The MCIMR Algorithm.
input : A number k, a set of attributes A, the outcome, treatment attributes

O and T , and the context C
output: An explanation E.

1 MCIMR(k,A, O, T, C):
2 E ← ∅.
3 for i ∈ [1, k] do
4 Ei ← NEXTBESTATT (O, T,C,E,A)
5 if O ⊥⊥ Ei|E // The responsibility test for Ei

6 then
7 return E

8 E ← E
⋃
{Ei}

9 return E
10 NEXTBESTATT (O, T,C,E,A):
11 E∗ ←None, v ←∞
12 foreach E ∈ A \E do
13 /* Weights are added if selection bias was detected

*/
14 v1 ← I(O;T |C,E), v2 ← 0 // Min CI computation
15 foreach E′ ∈ E do
16 /* Weights are added if selection bias was

detected */
17 v2 ← v2 + I(E;E′) // Min redundancy computation

18 if v1 +
v2
|E| < v then

19 E∗ ← E, v ← v1 +
v2
|E|

20 return E∗

Our goal is to minimize MCI and MR simultaneously.
Namely, we look for a k-size attribute set E∗

k⊆A such that:

E∗
k=argmin|Ek|=k[MCI(O, T,C,Ek)+MR(Ek)] (4)

In the k-th iteration we have the k−1-size attribute set
Ek−1. The k-th attribute to be added is the attribute that
minimizes the following condition:

Ek=argminE∈A\Ek−1
[I(O;T |C,E)+

1

k−1

∑
Ei∈Ek−1

I(E;Ei)]

(5)

We prove that the combination of the MCI and MR criteria
is equivalent to Equation 1. Namely, when k is given, the
MCIMR algorithm computes the optimal k-size solution.

Theorem 4.1: The combination of the MCI and MR criteria
is equivalent to Equation 1.

It follows, that for a given k, the MCIMR algorithm that
selects attributes according to the condition given in Equation
5 (i.e., the combination of MCI and MR criteria), yields the
optimal k-size solution according to Equation 1. But since
Equation 1 is equivalent to the CORRELATION-EXPLANATION
problem definition when k is fixed, we get that the MCIMR
algorithm yields the optimal k-size solution when k is given.

However, in practice, the size of the optimal solution is
unknown. A straightforward approach (that is impractical
without further assumptions) is to generate m attribute sets of
sizes 1, . . . ,m, where m is |A|, using our algorithm. It will
then select the optimal solution by comparing these solutions.
However, given two solutions of sizes k and k′, we cannot ac-
curately determine whether I(O;T |C,Ek)< I(O;T |C,Ek′)
or vice versa, since it requires to estimate joint probabilities
for high dimensional attribute sets (which, as mentioned above,
cannot be done accurately).

Stopping Criterion. Therefore, we define a heuristic stop-
ping criterion for the MCIMR algorithm. Specifically, we



propose a responsibility test for the next attribute to be
added. As mentioned, we assume that attributes in which
their marginal explanatory power is small are of no interest
to analysts. Thus, given a set of k attributes Ek, this test
verifies if the responsibility of a candidate attribute Ek+1 to
be added is (approximately) 0. If so, we stop the algorithm
without including this attribute.

To implement this responsibility test, we prove that given
a k-size attribute set Ek, the responsibility of a candidate
attribute Ek+1 is close to 0 if O⊥⊥Ek+1|Ek.

Lemma 4.1 (Responsibility test): If O⊥⊥Ek+1|Ek then
Resp(Ek+1)≤0.
For this test we use the conditional independence test proposed
in [1] (which can only be used to determine conditional
independence and not for estimating partial correlation).

The full MCIMR algorithm is depicted in Algorithm 1.
This algorithm does not directly optimizes the objective of
the CORRELATION-EXPLANATION problem. It instead takes
as an input a bound k on the maximal explanation size,
which the analyst provides. If it has not stopped earlier
(according to the stopping criterion), it will terminate after
k iterations. Attributes are iteratively added according to
the NEXTBESTATT procedure (line 4). The algorithm then
applies the responsibility test to a selected attribute. If the
responsibility of this attribute is ≈0, it terminates and returns
the solution obtained until this point (lines 5-7). Otherwise,
it terminates after k iterations (line 9). Given the attribute
set selected up until the i-th iteration, the NEXTBESTATT
procedure finds the i-th attribute to be added. It implements
Equation 5, by iterating over all candidate attributes and
computing their individual explanatory power (line 14), and
their redundancy w.r.t. selected attributes (lines 16-18). For
simplicity, we omitted parts dedicated to handling missing data
from presentation. In our implementation, before executing
lines 14 and 18, we check if weights are needed to be added
and adjust the computation accordingly.

We next summarize the complexity of our algorithm.
Proposition 4.1: The time complexity of the incremental

MCIMR algorithm is O(k|A|).
The size of A is potentially very large. Thus, in the next

section, we propose several optimizations to reduce it.

B. Pruning Optimizations

We propose several optimizations to reduce the size of A
and thereby reduce execution times. These optimizations are
used to prune attributes that are either uninteresting as an
explanation or cannot be a part of the optimal solution. We pro-
pose two types of optimizations: Across-queries optimizations
that could be executed at pre-processing, and query-specific
once that could be done only once O and T are known.

Preprocessing pruning. Attributes discarded at this phase
either have a fixed value, a unique value for each tuple, or lots
of missing values. Thus, such attributes are uninteresting as an
explanation [1], [12]. Simple Filtering: We drop all attributes
with a constant value (e.g., the attribute TYPE which has the
value Country to all countries), and attributes in which the

percentage of missing values is >90%. High Entropy: we
discard attributes such as WIKIID, that have high entropy and
(almost) a unique value for each tuple (as was done in [1]).

Online pruning. Logical Dependencies: Our goal is to
identify potential confounding variables, affecting both T
and O and create a spurious correlation between them. The
presence of logical dependencies can hinder this process, as
they can obscure the true relationships between attributes.
This reflects a common assumption in causal inference that
the underlying distribution is strictly positive, meaning that
all events have non-zero probability. This assumption breaks
down in the presence of logical dependencies. We thus discard
all attributes that are functionally dependent on T or O (e.g.,
COUNTRYCODE ⇒ COUNTRY) using a test for functional
dependencies suggested in [1]. (see details in [21]). Low Rel-
evance: As mentioned, we assume that the optimal explanation
does not contain attributes which are individually unimportant
but become important in the context of others. We leverage
this assumption to prune attributes in which their individual
explanatory power is low (see full details in [21]).

C. Identifying Unexplained Subgroups

The MCIMR algorithm finds the explanation for the corre-
lation between T and O. While the generated explanation is
insightful considering the whole data, it may be insufficient
for some parts in the data. We thus propose an algorithm
the analyst may use after getting the explanation, to identify
unexplained data subgroups. It receives the original query Q
and the generated explanation. The output is a set of data
groups corresponding to context refinements of Q, in which a
different explanation is required and thus may be of interest.
In other words, it finds the top-k largest data groups for which
the generated explanation might be insufficient.

Example 4.1: Consider a query compare the average salary
of developers among countries. The explanation found by
MESA is E={HDI, GINI}. As mentioned, the HDI of all
countries in Europe is similar. Thus, for countries in Europe,
it is likely that E is not a satisfactory explanation.
For simplicity, numerical attributes are assumed to be binned.
Data groups are defined by a set of attribute-value assignments
and correspond to refinement of the context C of Q. Treating
the context C as a set of conditions, a refinement C ′ of C
is a set s.t. C ′⊂C. We aim to find the largest data groups
s.t. E can not serve as their explanation. Formally, given an
explanation E, I(O;T |C,E) is referred to as the explanation
score for C. We are inserted in the top-k data groups (in terms
of size), each corresponding to a context refinement C ′ of C,
s.t. their explanation score is >τ for some threshold τ (τ can
be set based on the initial explanation score).

Example 4.2: Continuing with Example 4.1, we refine Q by
adding a WHERE clause selecting only countries in Europe
(C ′ = {CONTINENT = EUROPE}). Let QEU denote this query.
We get: I(O;T |C ′,E)=2.13. As mentioned in Example 2.3,
the optimal explanation for QEU is {GINI, DENSITY}.

A naive algorithm would traverse over all possible contexts
refinements C ′, check if the explanation score is >τ , and will



Algorithm 2: Top-k unexplained data groups.
input : A number k, a set of attributes A, the attributes O and T , the

context C, an explanation E, and a threshold τ .
output: Context refinements {C1, . . ., Ck} s.t. the corresponding groups are

the largest k groups and I(O;T |Ci,E)>τ

1 R ← ∅
2 MaxHeap← GENCHILDREN(C)
3 while |R| < k or MaxHeap.isEmpty() do
4 C′ ←MaxHeap.exatractMax()
5 if I(O;T |C′,E) > τ then
6 UPDATE(R, C′) // If none of the ancestors of C′

are in R, insert C′ into R.
7 else
8 for C′′ ∈ GENCHILDREN(C′) do
9 MaxHeap.insert(C′′)

10 return R

choose the largest data groups for which E is not a satisfactory
explanation. We propose an efficient algorithm, exploiting the
notion of pattern graph traversal [54]. Intuitively, the set of
all context refinements can be represented as a graph where
nodes correspond to refinements and there is an edge between
C and C ′ if C ′ can be obtained from C by adding a single
value assignment. This graph can be traversed in a top-down
fashion while generating each node at most once (see [21]).

Algorithm 2 depicts the search for the largest k groups for
which E is not a satisfactory explanation. It traverses the graph
in a top-down manner, starting for the children of C. It uses a
max heap MaxHeap to iterate over the refinements by their
size. It first initialize the result set R (line 1) and MaxHeap
with the children of C (line 2). Then, while R consists of
less than k refinements (line 3), the algorithm extracts the
largest (by data size) refinement C ′ (line 4) and computes
I(O;T |C ′,E). If it exceeds the threshold τ (line 5), C ′ is
used to update R (line 6). The procedure update checks
whether any ancestor of C ′ is already in R (this could happen
because of the way the algorithm traverses the graph). If not,
C ′ is added to R. If I(O;T |C ′,E)≤τ (line 5), the children
of C ′ are added to the heap (lines 8– 9).

Proposition 4.2: Algorithm 2 yields the top-k largest data
groups in which their explanation score is greater than τ .

In the worst case, there are no such k data groups and hence
the algorithm traverses over every possible context refinement
of Q However, as we show, in practice this algorithm effi-
ciently identifies the data groups of interest, while exploring
only a handful of context refinements.

V. EXPERIMENTAL STUDY

We present experiments that evaluate the effectiveness and
efficiency of our solution. We aim to address the following re-
search questions. Q1: What is the quality of our explanations,
and how does it compare to that of existing methods? Q2:
How robust are the explanations to missing data? Q3 What is
the efficiency of the proposed algorithm and the optimization
techniques? Q4: How useful are our proposed extensions?

Our code and datasets are available at [21]. We used DBPe-
dia KG [19] for attribute extraction, and the Pyitlib library [55]
for information-theoretic computations. The experiments were
executed on a PC with a 4.8GHz CPU, and 16GB memory.

Table I: Examined Datasets.
Dataset n —E— Columns used for extraction
SO [56] 47623 461 Country, Continent
COVID-19 [57] 188 463 Country, WHO-Region
Flights [58] 5819079 704 Airline, Origin/Destination city/state
Forbes [59] 1647 708 Name

Datasets: We examine four commonly used datasets: (1) SO:
Stack Overflow’s annual developer survey is a survey of people
who code around the world. It has more than 47K records
containing information about developers’ such as their age,
income, and country. (2) Covid-19: This dataset includes
information such as the number of confirmed, death and new
cases in 2020 across the globe. (3) Flights: This dataset
contains transportation statistics of over 5.8M domestic flights
operated by large air carriers in the USA. (4) Forbes: This
dataset contains annual earning information of 1.6K celebrities
between 2005 − 2015 It contains the celebrities’ annual pay,
and category (e.g., Actors, Producers).

The attributes used for property extraction and the number
of extracted attributes in each dataset are given in Table I.
Baseline Algorithms: We compare MESA against the follow-
ing baselines: (1) Brute-Force: The optimal solution accord-
ing to Def. 2.1. This algorithm implements an exhaustive
search over all attribute subsets. To make it feasible, we
run it after employing our pruning optimizations. (2) Top-K:
This baseline ranks the attributes according to their individual
explanatory power (equivalent to Max-Relevance only). (3)
MRMR [53] This feature selection algorithm selects attributes
based on Max-Relevance (measured by the mutual information
with O) and Min-Redundancy criteria. We also tested a version
of MRMR that includes T in the selected attribute set (but
does not include it as part of the explanation) to account
for the redundancy w.r.t. T . (4) HypDB [1]: This system
employs an algorithm for confounding variable detection based
on causal analysis. It identifies an attribute set that has uneven
or unbalanced distribution w.r.t T (ignoring O). (5) MESA−:
To examine the effect of pruning, we examine the explanations
generated by MESA without the pruning optimizations.

We also examined the explanations generated using linear
regression and CajaDE [12], a system that generates query
results explanations based on augmented provenance informa-
tion. However, since in all cases, those baselines generated
explanations obtaining the lowest scores, we omit their results
from presentation. More details are provided in [21].

Unless mentioned otherwise, we set the maximal explana-
tion size, k, to 5 and extracted attributes for 1-hop in the
KG. For a fair comparison, we run all baselines (except for
MESA−) after employing our pruning optimizations.

A. Quality Evaluation (Q1)

We validate our intuition that attributes extracted from KGs
can explain correlations in common scenarios. To this end,
we randomly generated 40 queries (10 from each dataset)
as follows. We set T to be an attribute used for attribute
extraction. We set O to be an attribute that could be predicted
from the data (e.g., DEPARTURE/ARRIVAL DELAY in Flights,
NEW/DEATH CASES in Covid-19). We then added a WHERE



Table II: User study: The best and second best explanations are marked in red and blue, resp.
Dataset Query Brute-Force MESA- MESA Top-K MRMR HypDB

SO

Q1 Average salary per
country

- HDI Rank, Gini HDI, Gini HDI, Established
Date

Population
Census, Gini

GDP

Q2 Average salary per
continent

- GDP Rank, Density GDP,Density GDP,Area rank GDP, Gini GDP

Q3 Average salary per
country in Europe

- Population Census,
Gini Rank

Population Cen-
sus, Gini

Population
Census,
Population
Estimate

Population
Census, HDI

Gini, Area Rank

Flights

Q1 Average delay per ori-
gin city

- Precipitation Days,
Year UV, Airline

Population urban,
Year Low F, Air-
line

Year Low F, Year
Avg F, December
Low F

Year Low F, Ar-
rival Delay, Year
UV

Year Low F, May
Precipitation
Inch, Airline

Q2 Average delay per ori-
gin state

- Density, Year Snow,
Airline

Population
estimation, Year
Low F, Airline

Population
estimation,
Population Urban,
Population Rank

Record Low F,
Arrival Delay,
Year Low F

Record Low
F, Population
estimation, Day

Q3 Average delay per ori-
gin cities in CA

- Density, Population
Metropolitan, Secu-
rity Delay

Density,
Population
Total,Security
Delay

Population
Metropoli-
tan,Security
Delay

Population Size,
Density, Arrival
Delay

Density,
Population
Ranking,
Cancelled

Q4 Average delay per ori-
gin state and airline

- Population Total,
Fleet size

Population
Ranking, Fleet
size

Density, Arrival
Delay

Year Low F, Den-
sity

Revenue, Dec
Record Low F

Q5 Average delay per air-
line

- Equity, Fleet Size Equity, Fleet
Size

Equity, Net In-
come

Equity, Arrival
Delay

Num of Employ-
ees, Revenue

Covid-19

Q1 Deaths per country HDI, GDP,
Confirmed
cases

HDI, GDP Rank,
Confirmed cases

HDI, GDP, Con-
firmed cases

GDP Rank, GDP
Nominal, HDI

Confirmed cases,
Recovered cases,
New cases

Density, Time
Zone, Confirmed
cases

Q2 Deaths per country in
Europe

Gini,
Population
Census,
Confirmed
cases

Gini Rank, Density,
Confirmed cases

Gini, Population
Census,
Confirmed
cases

Gini Rank, Gini,
GDP

Confirmed cases,
Recovered cases,
New cases

Currency, GDP,
New cases

Q3 Average deaths per
WHO-Region

Density, Con-
firmed Cases

Density,Confirmed
Cases

Density,Confirmed
Cases

Density,Confirmed
Cases

Confirmed cases,
Recovered case

Area
Km,Confirmed
Cases

Forbes

Q1 Salary of Actors Net Worth,
Gender, Age

Net Worth,
ActiveSince, Gender

Net Worth, Gen-
der

Net worth,
Awards

Net Worth, Hon-
ors

Gender, Honors

Q2 Salary of
Directors/Producers

Net Worth,
Awards

Years Active, Net
Worth

Net Worth,
Awards

Net Worth, Age Net Worth,
Awards

Years Active

Q3 Salary of Athletes Cups, Draft
Pick, Active
Years

National Cups, Draft
Pick

Cups, Draft Pick Total Cups, Na-
tional Cups

Active Years, Net
Worth

Cups, Active
Years

Table III: Avg. explanation scores according to the subjects.
Baseline Average Score Average Variance
Brute-Force 3.8 0.8
MESA- 3.7 1.1
MESA 3.5 0.9
HypDB 2.8 1.1
MRMR 2.2 0.5
Top-K 2.1 0.8

clause by randomly picking an attribute-value assignment, en-
suring selected subsets contain more than 10% of the dataset.
Full details are given in [21]. We say our approach was useful
if (1) the CMI between T and O (while conditioning on the
generated explanation) is lower than the original correlation
and (2) the explanation contains at least one extracted attribute.
We report this was the case in 72.5% percent of the queries.

Next, we aim to assess the quality of the generated expla-
nations to validate our problem definition. We present a user
study consisting of explanations produced by each algorithm.
Since a standard benchmark for results explanation does not
exist, we consider 14 representative queries suffering from
confounding bias, as shown in Table II. Our queries are
inspired by real-life sources, such SO annual reports [20],
media websites (e.g., Vanity Fair [60], USA Today [61] for
Forbes and Flights), and academic papers [5], [6]. Similar
experiments were conducted in [1], [2], [12]. To compare the
generated explanations with real-world explanations, we show
that our explanations are supported by previous findings. These

explanations were obtained manually and serve as our “ground
truth” to be compared with the generated explanations. A
similar approach was taken in [1], [62].

We recruited 150 subjects on Amazon MTurk. This sample
size enables us to observe a 95% confidence level with a 10%
margin of error. Subjects were asked to rank each explanation
of each method (shown together with its corresponding query)
on a scale of 1−5 (a higher score is better).

HypDB’s time complexity is prohibitive [1]. We run it over
all attributes in A (after pruning) and report that it never
terminates within 10h. Thus, we have no choice but to limit
the size of A for HypDB to allow it to generate explanations
in a reasonable time. For HypDB, besides pruning, we omitted
attributes uniformly at random, ensuring that |A|≤50. We only
report the results of Brute-Force for the Covid-19 and Forbes
datasets, as it was infeasible to compute them for the larger
datasets. We do not randomly drop attributes for computational
efficiency here because Brute-Force is intended to be an
optimal solution for our problem definition against which
our algorithm is judged. Table II depicts the explanations
generated by different methods, and Table III depicts the
average explanation scores given by the subjects.

We summarize our main finding as follows:
• The subjects found the explanations generated by Brute-
Force, MESA−, and MESA to be the most convincing.
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Figure 2: Distance from explainability scores of Brute-Force.
This supports our mathematical definition (Def 2.1) of what
constitutes a good explanation.
• MESA explanations are supported by previous in-domain
findings, which serve as ”ground-truth” explanations.
• Our pruning has little effect on explanation quality.
• Even when given with extracted attributes, our approach
outperforms existing solutions in terms of either quality (e.g.,
MRMR, CajaDE) or scalability (HypDB).

First, subjects found the explanations generated by Brute-
Force, MESA−, and MESA to be the most convincing.
The pairwise differences between the average scores of these
methods are not statistically significant. Previous in-domain
findings also support these explanations. For example, in SO
Q1, it was shown in [20] that there is a correlation between
developers’ salaries and countries’ economies. For Flights Q1,
it was stated in [61] that weather is one of the top reasons
for flights delay. For Covid-19 Q1, it was shown that there
is a correlation between countries’ economies and Covid-19
death rate [5], [6]. More details can be found in [21]. In
all cases where the results of Brute-Force and MESA are
different, it happens because MESA drops attributes with
insignificant responsibility (according to the responsibility
test). For example, in Forbes Q1, MESA dropped AGE. The
low difference between the results of MESA− and MESA
indicates that pruning has little effect on explanation quality.
Namely, MESA is able to execute efficiently without compro-
mising on explanation quality.

The explanations of all methods consist of extracted at-
tributes. This validates our assumptions that KGs can serve
as valuable sources for results explanations. The next best
competitor is HypDB (the average score is worse than that
of MESA. This difference is statistically significant, p<.05).
This is not surprising as HypDB finds confounding attributes.
However, its main disadvantage is its ability to scale. The
explanations generated by Top-K and MRMR were considered
to be less convincing (their average scores are statistically
significant from all other methods, p<.05). For Top-K, this is
substantially because it ignores redundancy among attributes.
For example, in Flights Q1, it chose the attributes YEAR
LOW F and YEAR AVERAGE F, which are highly correlated.
For MRMR, it substantially because it ignores T , as it seeks
attributes that are only correlated with O.

Explainability scores. Let E denote the explanation found
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Figure 3: Explainability as a function of missing data.

by an algorithm. We call I(O;T |E) the explainability score.
An explainability score equal to 0 means that E perfectly
explains the correlation between O and T . The explainability
scores of Brute-Force serve as the gold standard (as by
definition, it aims to minimize this score). In some cases,
the explanations generated by all algorithms, including Brute-
Force, cannot fully explain the correlations. E.g., in Flights
Q2, the explainability score of Brute-Force is 0.25. This means
that other factors affecting flight delays may not exist in the
KG (e.g., labor problems). The results are depicted in Figure
2. The y-axis is the distance between the explainability scores
of each method and Brute-Force. The lower the distance, the
better the explanation. Observe that the explainability scores
of MESA are almost as good as the ones of Brute-Force and
are much better than those of the competitors.

Additional experiments are given in [21].

B. Robustness to Missing Data (Q2)

Statistics regarding the percentage of missing values and the
percentage of extracted attributes suffering from selection bias
are given in [21]. We report that, on average, selection bias
was detected in 19% of extracted attributes.

We examine the robustness of our explanations to missing
data by varying the percentage of missing values from the
top 10 most relevant attributes. We examine two ways to
omit values: missing-at-random and biased removal, where
the top-x highest values were omitted (when varying x). We
examine the effect on our generated explanations’ average
explainability score. Explainability should not be affected if
an explanation is robust to missing data. We also examine
the effect on the explainability scores while imputing missing
values (using mean imputation [63]). The results for the SO
and Covid datasets are depicted in Figure 3. As expected, data
imputation has a huge negative effect on explainability. Our
approach is much less sensitive to missing data: Even with
50% missing values (at random or not), the explainability
scores have hardly changed. When the percentage of missing
values is above 50%, a lot of the information is lost, and thus
it is harder to estimate partial correlation correctly.

C. Efficiency Evaluation (Q3)

To examine the contribution of our optimizations, we report
the running times of the following baselines: No Pruning
—the MCIMR algorithm without pruning; Offline Pruning
—MCIMR with only offline pruning. We study the effect of
multiple parameters on running times. For each dataset, we
report the average execution time of the queries presented in



50 150 250 350 450 550
# of candidate attributes

0

3

6

9

12

15

tim
e 

(s
)

No Pruning
Offline Pruning
MCIMR

SO

50 150 250 350 450 550 650 750
# of candidate attributes

0

5

10

15

20

25

tim
e 

(s
)

Flights

50 150 250 350 450 550 650 750
# of candidate attributes

0

1

2

3

4

tim
e 

(s
)

Forbes
Figure 4: Running times as a function of the number of candidate attributes.

4700 14700 24700 34700 44700
# of tuples

0

5

10

15

tim
e 

(s
) No Pruning

Offline Pruning
MCIMR

SO

0.5M 1.5M 2.5M 3.5M 4.5M 5.5M
# of tuples

5

10

15

20

25

tim
e 

(s
)

Flights

100 600 1100 1600
# of tuples

0

1

2

3

4

tim
e 

(s
)

Forbes
Figure 5: Running times as a function of the number of rows in the dataset.

Section V-A. In all cases, the execution time of MCIMR was
less than 10 seconds. We omit the results obtained on the
(smallest) Covid-19 dataset from presentation, as the results
demonstrated similar trends to those of Forbes.

Candidate Attributes. In this experiment, we discarded at-
tributes from A uniformly at random. The results are depicted
in Figure 4. In all datasets, we exhibit a (near) linear growth
in running times as a function of the size of A. The execution
times of No-Pruning are significantly higher than those of
Offline Pruning and MCIMR, indicating the usefulness of
offline pruning. The difference in times across datasets is due
to their size. Estimating CMI on large datasets takes longer
than on small datasets. In Forbes, Offline Pruning is faster
than MCIMR, implying that in small datasets online pruning
is not necessary, as it takes longer than running MCIMR.

Data Size. We vary the number of tuples in the datasets by
removing tuples uniformly at random. The results are depicted
in Figure 5. In SO and Flights, observe that the dataset size
has little effect on running times. This is because of the fact
that when randomly omitting tuples, the number of considered
groups in the queries is almost unchanged. On the other hand,
since in Forbes, each group contained only a few records, we
exhibit a (near) linear growth in running times.

Explanation size. We vary the bound on the explanation size.
Recall that given a bound k, MCIMR returns an explanation
of size ≤k. It may return an explanation of size l<k if the
responsibility of the l+1-th attribute is ≈0. We report that
in all cases, the size of the explanations was no bigger than
3. Thus, k has almost no effect on running times, as the
algorithms terminate after 4 iterations.

Table IV: Top-5 unexplained groups for SO Q1.
Rank Size Data group
1 18342 CONTINENT = EUROPE
2 17899 CONTINENT = ASIA
3 15466 CONTINENT = NORTH AMERICA
4 14788 CURRENCY = EURO
5 12754 CONTINENT = AFRICA

D. Extensions (Q4)

We demonstrate the effectiveness of the Top-K unexplained
groups algorithm by focusing on SO Q1, setting τ>0.2. The
top-5 largest unexplained data groups are given in Table IV.
Observe that economy-related attributes (e.g., GDP, HDI) of
selected data groups are internally consistent (e.g., the HDI of
countries in Europe is similar). Thus, it makes sense that the
explanation for SO Q1 ({HDI, GINI}) will not be a satisfac-
tory explanation for these data groups. Indeed, the explanation
for the top-1 unexplained group (SO Q3) is different from
the one found for all countries. We ran this algorithm over
all other queries. The average execution time is 4.4s. This
demonstrates the ability of our algorithm to efficiently identify
data subgroups that are likely to be of interest to users.

VI. RELATED WORK

Results Explanations. Methods explaining why data is miss-
ing or mistakenly included in query results have been studied
in [64]–[67]. Explanations for unexpected query results have
been presented in [68], [69]. Those works are orthogonal
to our work, as we aim to explain unexpected correlations.
Another line of work provides explanations on how a query
result was derived by analyzing its provenance and pointing
out tuples that significantly affect the results [70]–[72]. Those
methods are designed to generate tuple-level explanations and
not attribute-level explanations that are required for unearthing
correlations. Another type of explanation for query results is a
set of patterns that are shared by one (group of) tuple but not



by another (group of) tuple [11]–[15]. However, those works
do not account for correlations among attributes.

We share with [12] the motivation for considering ex-
planations that are not solely drawn from the input table.
[12] presented CajaDE, a system that generates query results
explanations based on information from tables related to the
table accessed by the query. However, related tables often do
not exist. Moreover, their explanations are independent of the
outcome. Thus, even if CajaDE is given with the extracted
attributes, it may generate explanations that are irrelevant to
the correlation between the exposure and outcome.

Causal Discovery. While methods for identifying con-
founding variables through causal models using, for example,
backdoor and front-door criteria are well understood, they all
rely on the availability of causal models from background
knowledge [3]. However, in practice, causal models are often
not available. Specifically in our framework, in which we
dynamically integrate data with external sources and augment
it with potentially hundreds of attributes, obtaining causal
models is impractical. An alternative would be to use existing
methods for automatic discovery of causal DAGs. However, it
is in principle impossible to fully discover causal models [73]–
[75]. Furthermore, these existing DAG discovery methods are
generally intractable and do not scale in our setting. Our
approach can facilitate causal discovery by providing the
analyst with a set of potential confounding variables that may
explain the observed correlation, even in situations where there
is not enough information available to establish causality.

HypDB [1] aims to identify direct causes of the exposure
T and adjust for them in order to eliminate confounding bias.
In this sense, it seeks to identify the most relevant attributes
to T and ignores the outcome O altogether. This process
has several limitations: (1) the parents of T can only be
discovered from data under very strong assumptions about
the underlying causal model that are often impractical. It is
generally accepted that the process of discovering confounding
variables should rely on background knowledge and cannot
be fully automated [76]. (2) it only works if all parents of
T are observed in the data; (3) the proposed algorithm for
parent discovery is computationally prohibitive. In contrast,
our work does not claim to discover the causal relationships
but rather aims to discover potential confounding attributes
that can explain the observed correlation using an algorithm
that simultaneously consider both T and O. This could fa-
cilitate the process of identifying confounding variables for a
more thorough causal analysis. Moreover, our mechanism is
computationally tractable.

Dataset Discovery. Given an input dataset, dataset discov-
ery methods find related tables that can be integrated via join
or union operations. Existing methods estimate how joinable or
unionable two datasets are [44], [45], [77], [78]. Other works
focused on automating the data augmentation task to discover
relevant features for ML models [79]. While these works focus
on finding datasets that are joinable or unionable, we aim to
find unobserved attributes that explain unexpected correlations.
Recent work proposed solutions to discover datasets that can

be joined with an input dataset and contain a column that is
correlated with a target column [27], [46]. Such techniques can
be integrated into our system for extracting candidate attributes
from tabular data. We focus on finding attributes that minimize
the partial correlation between two columns rather than finding
columns that are correlated with a target column. Thus, future
work will extend these techniques to support our goal.

Feature Selection. The CORRELATION-EXPLANATION
problem is related to the well-studied Feature Selection (FS)
problem [18], [28], [80], which aims to eliminate redundant
or irrelevant variables from input data in order to reduce
computational cost, improve understanding of the data, and
increase prediction accuracy [28]. In this sense, FS algo-
rithms can be seen as methods that identify the most relevant
attributes to the outcome O. However, the CORRELATION-
EXPLANATION problem is conceptually different, as it seeks
to discover a minimal set of attributes that can explain the
observed correlation between O and T , and therefore must
consider both attributes at the same time. The closest to
our problem is a line of work using information-theoretic
methods for FS [18], such as the MRMR algorithm [53], which
selects features based on Max-Relevance and Min-Redundancy
criteria. However, the main difference is that in MCIMR we
consider the relevance for the association of T and O, whereas
MRMR considers the relevance to the target attribute O only.
We thus define the min-conditional-mutual-information (CMI)
criterion to account for the contribution of attributes to explain
the relationship between T and O. Another key difference
is the stopping condition: while in MRMR the size k of the
selected feature set is determined using the underlying learning
model, in MCIMR we set k using responsibility scores.

VII. CONCLUSION AND LIMITATIONS

This paper presented the CORRELATION-EXPLANATION
problem, whose goal is to identify uncontrolled confounding
attributes that explain unexpected correlations observed in
query results. When interpreting the generated explanations,
it is important to consider the following limitations: First, the
quality of the generated explanation may be affected by factors
such as the quality of extracted data (e.g., incorrect values) and
the quality of black-box components (e.g., the entity linker, the
regression model used for computing weights). Second, the
generated explanations may not be complete, meaning that
other unobserved confounding attributes were not extracted.
Finally, since we only measure correlations, generated ex-
planations consist of potential confounders and may include
attributes that are not actually confounding attributes. Since
determining causal relationships requires further assumptions
and/or background knowledge, future research will investigate
in which cases we can establish causality.
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