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ABSTRACT
Causal inference is fundamental to empirical scientific discoveries
in natural and social sciences; however, in the process of conduct-
ing causal inference, data management problems can lead to false
discoveries. Two such problems are (i) not having all attributes re-
quired for analysis, and (ii) misidentifying which attributes are to be
included in the analysis. Analysts often only have access to partial
data, and they critically rely on (often unavailable or incomplete)
domain knowledge to identify attributes to include for analysis,
which is often given in the form of a causal DAG.We argue that data
management techniques can surmount both of these challenges. In
this work, we introduce the Causal Data Integration (CDI) problem,
in which unobserved attributes are mined from external sources
and a corresponding causal DAG is automatically built. We identify
key challenges and research opportunities in designing a CDI sys-
tem, and present a system architecture for solving the CDI problem.
Our preliminary experimental results demonstrate that solving CDI
is achievable and pave the way for future research.
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1 INTRODUCTION
Causal inference lies in the heart of empirical research in natural
and social sciences and is commonly used in multiple disciplines,
including sociology, medicine, and economics [26, 33]. It aims to
answer causal queries, such as, “Does being overweight cause coro-
nary heart disease – independent of cholesterol, and diabetes?"
or “Do tobacco advertisements entice adolescents to buy more
cigarettes regardless of whether their parents smoke?" Causal infer-
ence enables analysts to answer causal questions about attributes
from a dataset, ultimately enabling them to make real-world discov-
eries. Pearl’s framework [40], which we adapt in this work, provides
a principled way to causal inference using structural causal models.

Cause-effect questions are designed to determine whether an
exposure variable (a pain reliever) causes or affects an outcome vari-
able (pain). To correctly estimate causal effects, one must consider
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Table 1: Example Input Dataset.
State Mask

Policy
Confirmed
Cases

New
Cases

Recovered Death
cases

MA yes 121046 2740 4980 109
FL yes 640978 24349 25140 55
CA no 735235 31150 42170 34
SD no 15300 1791 2083 49

confounding variables—variables that influence both the exposure
and outcome and thus might distort the association between them.
Otherwise, one might draw perplexing conclusions due to confound-
ing bias [41] that can lead to overestimation or underestimation of
the association between exposure and outcome. The internal valid-
ity of a study heavily relies on how well confounding bias has been
addressed. However, to determine a sufficient set of confounding
variables to account for confounding bias, background knowledge
about the data generative process is required. This knowledge is
often given in the form of a causal DAG depicting causal relation-
ships between the attributes [40] (and is wildly used in econometric
and social sciences [26, 33]). Pearl [40] presented sufficient and
necessary conditions for identifying1 the adjustment set of vari-
ables to include in the analysis, which can be checked against a
causal DAG. However, analysts often lack such a DAG [22]. While
associational assumptions are testable from data, causal relations
cannot, in general, be fully recovered from data [41].

We identify two fundamental challenges for conducting valid
causal inference: First, critical confounding variables may not be
included in the data. Second, even if they are included, the back-
ground knowledge required to identify the correct adjustment set
of variables might be missing. We argue that data management
techniques and ideas can surmount both of these challenges. We
illustrate that via the following example:

Mary, a data analyst in the WHO organization, aims to estimate
the (treatment) effect of a mask policy on the coronavirus mortality
rate. To do this, she examines a dataset containing Covid-19-related
facts in multiple states in the US (an illustration of this dataset is
given in Table 1), and uses a Causal analysis tool (e.g., [49, 53]). To
correctly estimate the effectiveness of face masks, Mary must consider
confounding variables. However, there are confounding variables that
are not included in her data. For example, the weather affects people’s
willingness to wear masks and Covid-19 death rate [47]. Moreover, to
determine a sufficient set of confounding variables, Mary must use
background knowledge of causal relationships she may lack.

In this example, variables missing from the dataset are critical for
the analysis to avoid confounding bias. Thus, Mary must integrate
her data with external data sources. This is a laborious task, typi-
cally done using data discovery and integration tools (e.g., [36, 59])
by skilled programmers—which is often not the case for social or

1In causal inference, identifiability typically refers to the conditions that permit mea-
suring causal effect from observed data. Here, we discuss the ability to identify a
sufficient adjustment set of variables for accurate causal inference.
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natural scientists. We argue this is the case for many real-life sce-
narios. After augmenting the data to include unobserved variables,
the next step is determining a sufficient adjustment set of variables
to account for confounding bias. However, Mary does not have the
required background knowledge to do that.
Our Vision: Our goal is to mine unobserved confounding variables
and missing background knowledge needed to answer causal ques-
tions. To this end, we introduce the Causal Data Integration (CDI)
problem. CDI is an effort to augment an input dataset with unob-
served variables and background knowledge required for causal
analysis. To address the challenge of finding unobserved variables,
the system mines variables from external sources. To overcome the
challenge of identifying the right adjustment set of confounders,
the system then builds a corresponding causal DAG, ensuring the
adjustment set is sufficient for controlling the confounding bias.
A CDI system may greatly reduce the manual effort devoted to
performing causal analysis, allowing analysts to get all required
data and background knowledge quickly and effectively.

CDI may also be beneficial for the data management community.
Causal inference has been shown to be useful for various data
management tasks, including query result and classifier explanation
[8, 42, 56], and hypothetical reasoning [21]. However, some of these
studies make strong assumptions about the underlying causal DAG
that may not hold in practice [26, 33]. For example, [21] assumes
that the DAG is known, and [42] assumes that all confounding
variables are present in the input dataset. To address these issues, a
CDI system can be utilized to construct a causal DAG for a given
dataset while integrating relevant missing attributes. This not only
addresses the limitations of existing studies but also enables the
use of causal inference in more complex and realistic scenarios.

In this work, we show how a CDI system can be accomplished.
Measure of Success: Distinct from the classical data integration
task, where success is defined by its ability to combine data from
different sources and provide users with a unified materialized view
of them, the success of a CDI system is defined by the ability to
discover all relevant unobserved variables and recover the correct
set of confounders for a causal question. The CDI task is potentially
easier than data integration. However, its impact is greater, as it en-
ables analysts to conduct causal analysis more easily. A CDI system
enables analysts to include all confounding variables in the analysis;
failing to do so may lead to false discoveries, incorrect medical di-
agnoses, and erroneous conclusions [26, 33]. In our example, a CDI
system mines, among others, attributes describing the weather and
population density per state, and infers causal relations among the
attributes in the augmented dataset. A successful CDI system would
assist Mary in identifying the right adjustment set of attributes to
account for confounding bias, allowing her to accurately estimate
the effect of an enforced mask policy on the mortality rate.
Challenges & Opportunities: The first challenge is to augment an
input dataset with unobserved variables, ensuring the output causal
DAG is complete (i.e., there are no unobserved confounding vari-
ables). Data discovery methods have been extensively researched to
identify relevant data sources that can be integrated with an input
dataset for attribute extraction [12, 14]. However, these methods
are not specifically designed to discover unobserved attributes that
are relevant for cause-effect estimation. This presents a unique

opportunity to develop dedicated data discovery tools tailored for
identifying unobserved confounding variables.

Extracted attributes may contain data quality issues, such as
outliers and missing values. These issues may lead to erroneous
conclusions, compromising the reliability of causal inference. In
particular, missing values pose a significant challenge in causal
inference as they may result in selection bias [10], where certain
samples are preferentially excluded from the data. Other data qual-
ity issues, such as inconsistent data formats and data duplication,
can also impact the accuracy of causal inference analysis. Therefore,
in addition to handling missing values, it is crucial to ensure that
the system is robust to various data quality issues to ensure the
validity of causal inference results.

The challenge of identifying the correct adjustment set and con-
structing a causal DAG is particularly difficult when dealing with
hundreds of extracted attributes. A human-driven causal DAG con-
struction (from domain expertise) is infeasible in this scenario, and
automatic methods for building a full causal DAG may not be feasi-
ble either [22]. To this end, we propose the construction of a cluster
causal DAG (C-DAG) [9], which groups related attributes and only
specifies causal relationships between clusters of attributes. By
doing so, the correct adjustment set of attributes can still be identifi-
able from this C-DAG. This approach reduces cognitive overhead for
analysts and makes causal analysis possible for high-dimensional
data, which is currently not feasible for existing tools (e.g., [49, 53]).
However, a main challenge is how to maintain the necessary level
of granularity to ensure accurate causal inference. The limitations
of existing solutions and challenges in constructing the desired
C-DAG are discussed, and a limited prototype implementation for
solving the CDI problem is presented with preliminary experimen-
tal results demonstrating that solving CDI is achievable.

2 THE CDI PROBLEM
2.1 Data Model and Background
The input dataset D contains the exposure (𝑇 ) and outcome (𝑂)
attributes. A causal DAG for D is a DAG whose nodes are the at-
tributes and whose edges capture all causal relationships between
the attributes [40]. Generally, because causes must precede effects,
the literature considers causal DAGs rather than graphs [40]. Causal
DAGs provide a simple way of graphically representing causal rela-
tionships and are particularly helpful in understanding potential
sources of bias in causal estimations. It is well-known that back-
ground knowledge is required to determine a causal DAG for a given
dataset [41]. A causal DAG can only be as good as the background
information used to create it [38]; a DAG is complete and therefore
has a causal interpretation only if it contains all common causes of
any two variables. In Section 3.3, we review existing approaches
for building a causal DAG for a given dataset and discuss their
limitations. We assume the analyst is interested in investigating
a causal relationship between 𝑇 and 𝑂 . She may wish to estimate,
e.g., the direct, indirect, or total effect [40]. The total effect of𝑇 on𝑂
is the total extent to which 𝑂 is changed by the 𝑇 . It is equal to the
sum of the direct and indirect effects. Causal questions about total
and (in)direct effect could be answered by identifying the right set
of confounding (that influence both 𝑇 and 𝑂) and mediating (that
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Figure 1: Example causal DAG for Table 1

mediate the relationship between 𝑇 and 𝑂) variables. Such vari-
ables could be identified using graphical criteria (e.g., the backdoor
criterion [40]) that can be checked against a causal DAG.

Example 2.1. In our example, 𝑇 is mask policy, and 𝑂 is
death cases. A corresponding causal DAG is shown in Figure 1. To
obtain a reliable estimate of the total effect of𝑇 on𝑂 , it is crucial to
adjust for all relevant confounding variables. However, mistakenly
assuming that the DAG contains all relevant information, the adjust-
ment set only includes the attributes state and confirmed cases.
As is common in causal inference, missing confounders can lead to
biased estimates. Thus, it is necessary to consider external data to
incorporate missing variables.

2.2 Problem Formulation & Challenges
Given an input dataset, the system mines unobserved confounding
attributes relevant for a given causal estimation, yielding an aug-
mented dataset D̂. It then maps the attributes in D̂ into a causal
DAG, to enable analysts to determine the adjustment set. We next
outline key challenges in designing such a system:
(1) Completeness: Unobserved variables can dramatically affect
the quality of causal analysis [32, 41]. Thus, the first challenge is
to ensure the generated DAG is complete, i.e., there are no unob-
served confounding variables w.r.t. the provided data sources. Our
goal is to ensure that all relevant information can be automatically
extracted from the provided sources. However, completeness, in
general, cannot be guaranteed since relevant variables may exist
outside of the provided data sources.
(2) Robustness: The robustness of a CDI system is determined by
its ability to handle various data quality issues that may arise during
the integration process. As in general data integration, there are
multiple data quality issues that a CDI system has to face, including
missing values and outliers. The impact of such issues on causal
inference is particularly significant. Unlike in machine learning,
where data quality issues may only result in a slight drop in accu-
racy, these issues can lead to false discoveries in causal inference
if not handled properly. This is because if these issues are not ran-
domly distributed across the exposure groups, they can significantly
impact the validity of the resulting conclusions. One common is-
sue that can significantly impact causal inference is missing data.
Extracted attributes may contain missing values, which can lead to
selection bias and erroneous conclusions. Thus, a key challenge is
to ensure the system is robust to various data quality issues.

Table 2: Extracted attributes from different sources.
Extracted Attributes from US Open Data

State Population size Population density
MA 6,981,974 901
FL 22,244,823 402
CA 39,029,342 254
SD 909,824 12

Extracted Attributes from DBPedia
State Governor snow inch Avg temp. Min temp.
MA Maura Healey 51.05 48.14 23
FL Ron DeSantis - 71.8 70
CA Gavin Newsom - 61.17 54
SD Kristi Noem 37.43 45.54 34

(3) Conciseness:We can potentially extract hundreds of attributes
from given data sources, which can lead to a complex, high-dimensional
causal DAG. To overcome this, the CDI system should aim to reduce
users’ cognitive overhead in interpreting the DAG. It is also crucial
to ensure the scalability of causal analysis, as existing tools are
not feasible for high-dimensional data [49, 53]. One approach is
to ensure that related attributes are grouped into clusters while
still ensuring that the correct set of confounders is identifiable.
Thus, a third challenge is to ensure the output DAG is concise. The
CDI system should be able to construct a causal DAG that effec-
tively captures the causal relationships between attributes while
maintaining the necessary level of granularity to ensure accurate
causal inference. This will enable analysts to efficiently handle high-
dimensional data while facilitating information elicitation about
the validity of the assumptions used for drawing causal inferences.

3 THE CDI SYSTEM
Our system operates as a 3-steps pipeline. First, the Knowledge
Extractor, extracts candidate attributes to handle the completeness
challenge. The Data Organizer then handles data quality issues to
account for the robustness challenge. Last, the Causal DAG Builder
builds a clustered casual DAG to handle the conciseness challenge.
We next present the key challenges and research opportunities for
each system component.

3.1 The Knowledge Extractor
This module receives a table D (containing 𝑇 and 𝑂) and sources
of knowledge. From each source, it extracts attributes representing
additional properties of entities from D. A successful Knowledge
Extractor mines all unobserved variables that should be included in
the analysis. The primary goal of the Knowledge Extractor is to ex-
tract all relevant variables from the provided data sources to enable
reliable causal inference. In causal inference, the unconfoundedness
assumption [39] (the assumption that all variables affecting both the
exposure 𝑇 and the outcome 𝑌 are observed and can be controlled
for) is a key consideration. This assumption is similar to the closed-
world assumption in database in that it assumes that the database
is complete. However, since complete knowledge of all variables
affecting both𝑇 and𝑂 is often unattainable, the focus should be on
extracting all relevant variables from the provided data sources. The
module is designed to ensure that as much relevant information as
possible can be automatically extracted from the provided sources,
and its capabilities can be expanded over time to incorporate new
sources or refine the extraction and integration process. We next
provide an example of how it works with specific data sources.
Data Lakes: There has been unprecedented growth in the volume
of publicly available data (e.g., the US Federal Open Data [6] and the

2661



Federal Reserve Economic Data [4]). We can rely on the rich body
of work on data discovery [12, 14] to find relevant data sources that
can be alignedwith the input table for attribute extraction. However,
existing methods use notions of relevance for discovery [36, 59, 60],
whereas we search for unobserved confounding variables relevant
to cause-effect estimations. Recent work has proposed solutions
that can discover joinable datasets with column(s) correlated with
a given target column and an input table [19, 44]. However, future
research is required to extend these techniques for extracting can-
didate confounding attributes from tabular data, which can further
improve the completeness of the extracted information.
Knowledge Graphs: There are multiple general-purpose (e.g.,
DBpedia [3]) or domain-specific (e.g., for medical proteomics [45],
or protein discovery [35]) KGs that act as central storage for data.
To extract attributes from a KG, we may map values that appear
in D to their corresponding entities in the KG G, using named
entity disambiguation tools (e.g., [37]). Next, given an entity, one
can extract all of its properties, building the universal relation [20]
out of all derived relations. One of the strengths of a KG is that most
of the attributes are already reconciled. To extract more attributes,
one may "follow" links in G (i.e., extract the properties of values
which are entities in G as well). Future work will identify which
links in a KG are worth following to extract relevant confounders.
Unstructured Data: Unstructured data like text and images are
valuable for identifying missing confounding variables. Medical
records often include unstructured text, such as physician notes,
which offer insights into patients’ health status and potential con-
founders. Medical images also contain important features that can
influence treatment outcomes. However, analyzing unstructured
data for causal analysis poses challenges due to their lack of orga-
nization. Existing techniques can be applied to extract meaningful
information [57]. For example, sentiment analysis can be applied to
text to extract relevant features, and vision methods can be used to
extract image parts. This can improve the accuracy of causal analy-
sis. Future work could develop methods for extracting interpretable
features from unstructured data tailored for causal inference.

Example 3.1. The Knowledge Extractor extracts potential con-
founding variables from multiple knowledge sources. Specifically, it
extracts the population density and size by state from the US Open
data lake by joining the input table with a table containing statistics
on population (based on state names). From DBpedia, it extracts
available properties of each state (by aligning the state name with
its entity in DBpedia), such min temperature, amount of snow, and
governor. A visualization of extracted attributes is given in Table 2.

Challenges & Opportunities: The Knowledge Extractor faces
the challenge of identifying relevant unobserved attributes to be
added for any arbitrary input dataset. The module must operate
correctly even in cases of value mismatches, such as when a state
name is given explicitly or as a shortcut. To tackle this challenge,
researchers can rely on a rich body of work on entity linking and
disambiguation [17, 18, 31]. Another challenge is to ensure that
only relevant attributes are extracted and to avoid the curse of
dimensionality. To achieve this, we plan to draw inspiration from
first principles, such as an information-theoretic approach or ap-
proaches based on the maximum likelihood principle.

3.2 The Data Organizer
The Data Organizer receives the extracted attributes and outputs
an augmented dataset. Extracted attributes may contain data qual-
ity issues, such as missing values and duplicated data, which can
compromise the reliability of causal analysis. A successful imple-
mentation of this module would handle all data quality issues and
ensure the system is robust to data quality issues. We next discuss
several example failure modes the Data Organizer have to face:
Functional Dependencies: We search for attributes affecting both
𝑇 and 𝑂 . The presence of logical dependencies can hinder this pro-
cess, as they can obscure the true relationships between them. In
particular, causal inference literature assumes that the underlying
distribution is strictly positive [40]. This assumption breaks down in
the presence of logical dependencies: Assume we have an attribute
𝐸 with the FD 𝐸⇒𝑇 . This means that when conditioning on 𝐸, there
is no association between 𝑇 and 𝑂 , regardless of 𝑂 . Namely, the
existence of 𝐸 violates the strict positivity assumption. A straight-
forward solution is to discard such attributes [42]. Another solution
is to group attributes with FDs, treating them as a single node.
We plan to develop a principled approach to discovering causal
relations with the presence of FDs. Missing Values: Inferring
causal relations requires recovering the probability distributions of
extracted attributes [22]. But since extracted attributes may con-
tain missing values, we must ensure that those probabilities are
recoverable to overcome potential selection bias. Inverse Probability
Weighting (IPW) is a commonly used technique to overcome selec-
tion bias [48]. In IPW, we restrict the attention only to complete
tuples, but more weight is given to some tuples. A main challenge
is to define sufficient conditions to detect cases where selection bias
may occur. In such cases, there is a need for a principled approach to
assigning weights to complete tuples (following the IPW approach)
to be used to discover causal relations correctly. This can be done by
extending the ideas proposed in [56]. Complex Table Relations:
Another challenge is to handle complex table relations. Extracted
attributes may have one/many-to-many relations with values in the
input table.We aim to generate a single, augmented table. A straight-
forward solution is to aggregate multi-valued attributes; another
possible direction is to develop representation learning techniques
tailored for causal inference [11]. To accommodate many-to-many
relations, one may use similar ideas as proposed in [43].

Challenges & Opportunities: Other data quality issues, such
as inconsistencies, and outliers, can also compromise the reliabil-
ity of causal inference and lead to erroneous conclusions if not
handled properly. This is because if these issues are not randomly
distributed across the exposure groups, they can lead to bias that
may significantly impact the validity of the resulting conclusions.
Merely using existing data-cleaning techniques (e.g., [16, 27]) may
not be sufficient in the context of causal inference, as they are not
designed to validate that bias is resolved. Thus, there is a need
for innovative techniques that can effectively address these data
quality issues to ensure accurate and reliable causal analysis. This is
particularly important in high-stakes domains, such as healthcare,
where erroneous conclusions can have severe consequences.

Example 3.2. The Data Organizer identifies the functional de-
pendency between state and governor and drops the governor
attribute. For attributes containing missing values (e.g., snow inch),
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Figure 2: The generated C-DAG. Nodes representing a cluster
of nodes are colored pink.

it checks if selection bias might occur. If so, it computes the weights
for existing values required for the analysis. It then joins the input
dataset with extracted attributes, yielding an augmented dataset.

3.3 The Causal DAG Builder
This module receives the augmented dataset and outputs a concise
causal DAG. Any successful Causal DAG Builder should output a
comprehensible and concise causal DAG while ensuring that the
correct adjustment set of attributes is identifiable from that DAG.
Desiderata: The desiderata for a desired causal DAG is summarized
as follows. First, there is a need to limit the number of nodes in the
output DAG. This is critical to ensure that causal analysis is possible
for high-dimensional data (which is not feasible for existing tools
[49, 53]) andwill reduce analysts’ cognitive overhead in interpreting
the DAG. Second, to ensure the output DAG is comprehensible, only
semantically-related attributes (e.g., avg temp, snow inch) should
be grouped and represented as a single node in the DAG. Last, we
must ensure that the output DAG enables identification of the right
adjustment set of confounders for accurate causal inference.
Clustered Causal DAG: To address the above desiderata, we pro-
pose to build a cluster causal DAG (C-DAG) [9]. A C-DAG provides
only a partial specification of causal relationships among attributes,
alleviating the requirement of specifying all causal relationships. In
a C-DAG, some attributes are grouped, and only the causal relation-
ships between clusters of attributes are specified. Previous work [9]
showed that cause-effect computations can be done directly from a
C-DAG. In the output C-DAG, only semantically-related attributes
should be clustered, and the number of nodes should be limited. A
remaining open question is how to ensure that the correct adjust-
ment set of confounding attributes is identifiable since, by grouping
attributes, we lose information about their inter-relations. We next
discuss the main challenges in building a desired C-DAG.
Identifying Causal Relationships: Causal discovery is a well-
studied problem [22, 50, 51, 55, 61], whose goal is to infer causal
relations among a set of attributes. Existing solutions can be split
into twomain approaches. Data-centric methods infer a causal DAG
based on data properties [22]. Though it is well-known that back-
ground knowledge is required to determine causal relations [41], a
causal DAG can be inferred from the data under some assumptions
[15, 22] (e.g., sufficiency, faithfulness). However, such assumptions
may not hold in practice and therefore limit the applicability of
these algorithms. Further, such algorithms may not capture causal

relations that are not present in the data and ignore available seman-
tic information. Text-mining approaches (e.g., [23–25]) infer causal
relations among concepts by extracting claims from text documents.
Other promising approaches are language models such as Chat-
GPT [13] that are trained to discover causal relations. The strength
of such methods is in identifying cause-effect relations between
seemingly-independent attributes or relations that otherwise could
not be found in the data. However, they lack any concrete data
on which to validate causal relations and may fail to distinguish
between direct and indirect effects, resulting in graphs containing
redundant edges. Further, such methods are also sensitive to the
quality of attribute names and cannot be fully trusted.

We argue that a hybrid approach that merges the two approaches
is required to overcome their shortcomings. Such an approach
uses both data-centric and text-mining solutions to infer causal
relations. However, achieving high accuracy in determining causal
relationships is still a challenge for CDI; it requires substantial in-
domain knowledge. A possible improvement is to use human-in-the-
loop tasks, minimizing human effort while maximizing accuracy.
Grouping Attributes: We aim to group semantically related at-
tributes and lift low-level information (e.g., temp, snow) into higher-
level concepts (weather). Semantic similarity between attributes
can be measured using embedding techniques (e.g., [34]), or onto-
logical relationships (e.g., [28]). To allow analysts to reason about
the C-DAG, we must further assign meaningful topics to the ob-
tained clusters. This can be done using recent advances in topic
modeling or zero-shot topic classification methods (e.g., [54]).
Identifiability: Besides causal relationships, a causal DAG specifies
conditional independencies among the attributes [40]. To ensure
the right adjustment set of attributes is identifiable from the C-DAG,
the set of conditional independencies among attributes induced by
the full causal DAG (where attributes are not clustered) should hold
in the C-DAG (and vice versa). But since we group attributes, some
of the conditional independencies may not be recoverable. While
there is a rich body of work on graph summarization [29, 30, 52, 58],
a tailored causal solution is required to ensure that all relevant
conditional independencies are recoverable from the output C-DAG.
Another open question is whether a single C-DAG is sufficient to
identify the adjustment sets for multiple cause-effect estimations.
In Section 4 we propose a best-effort algorithm to build a C-DAG.

Example 3.3. In our example (see Figure 2), the C-DAG builder
groups low-level related attributes (e.g., pop density, pop size)
into clusters associated with relevant topics (e.g., population), and
infers causal relations among the attribute clusters.

4 PROOF OF CONCEPT IMPLEMENTATION
We have built CATER, a limited, proof-of-concept prototype of our
CDI system. Our code is available at [7]. We next review some early
experimental results. Though our experiments are limited, our re-
sults are highly promising, showing that solving CDI is achievable.
Implementation Details: In CATER, the Knowledge Extractor
extracts attributes from DBpedia [3]. The Data Organizer discards
attributes that have functional dependencies with the exposure or
outcome, following [42]. We detect and handle selection bias in
extracted attributes using similar ideas as proposed in [56]. The
C-DAG Builder first groups attributes using VARCLUS [46] and
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Table 3: Quality Evaluation.
Dataset Baseline |E| Inclusion of Directed Edges Absence of Edges Direct Effect

Precision Recall F1 Precision Recall F1

Flights ( |𝑉 | = 9, |𝐸 | = 17)

CATER 25 0.94 0.64 0.74 0.62 0.72 0.66 0.04
GES 33 0.94 0.48 0.64 0.60 0.43 0.50 0.2
LinGAM 23 0.70 0.52 0.60 0.65 0.41 0.50 0.2
PC 27 0.70 0.44 0.54 0.62 0.42 0.49 0.2
GPT-3 Only 63 1.0 0.27 0.43 0.16 1.0 0.28 0.07
FCI 39 0.70 0.30 0.43 0.40 0.30 0.35 0.15

Covid-19 ( |𝑉 | = 11, |𝐸 | = 23)

CATER 27 0.74 0.63 0.68 0.59 0.61 0.6 0.01
GPT-3 Only 82 0.91 0.26 0.4 0.25 0.78 0.38 0.02
GES 16 0.26 0.37 0.31 0.49 0.31 0.38 0.05
PC 13 0.17 0.31 0.22 0.49 0.3 0.37 0.05
FCI 13 0.13 0.23 0.17 0.26 0.24 0.25 0.05
LiNGAM 1 0 0 0 0.63 0.42 0.5 0.05

assigns topics to clusters using GPT-3 [13]. It then populates the
graph edges according to templated query responses from GPT-3,
and prunes redundant edges according to the PC algorithm [51].
This algorithm may result in a graph containing cycles; however,
we report that CATER yields DAGs in examined cases.
Datasets: We examine two datasets: Covid-19 [1], which includes
information such as number of confirmed/death/recovered Covid-
19 cases worldwide; and Flights [2], which contains transportation
statistics of domestic flights in the USA. Our pipeline was executed
end-to-end in 645 and 304 seconds for Flights and Covid-19, resp.
Examined Scenarios: We use CATER to estimate the direct effect
of an exposure variable on an outcome (when not mediated through
mediator variables)—a common casual analysis task [40]. In Covid-
19, we estimate the direct effect of a country on Covid death rate,
and in Flights, we estimate the effect of departure city on
flight delays. The goal is to identify mediator variables that
should be included in the analysis, as many such variables are not
included in the datasets (e.g., weather, pop. density). In both cases,
the direct effect should be equal to zero (there is no direct effect). Failing
to identify mediators correctly will result in incorrectly estimating the
direct effect and falsely concluding that there is one.
Baseline Methods: We picked our current best configurations for
the Knowledge Extractor and the Data Organizer. The node clus-
ters and their assigned topics are the same across all baselines. We
evaluate different approaches to infer causal relations, demonstrat-
ing the superiority of a hybrid approach over existing solutions.
Our baselines include data-centric algorithms: PC [51], FCI [51],
GES [15] and LiNGAM [50], and a text-mining approach (asking
templated queries to GPT-3 [13]). To serve as ground truth, we
gather domain expert knowledge C-DAGs. For instance, airline
carriers and weather are causes for flight delays [5].
Quality Metrics: We measure the quality of generated C-DAGs
w.r.t. ground truth, in two ways: (1) directed edge presence or
absence, and (2) established effect between 𝑇 and 𝑂 . The precision,
recall, and F1 scores for presence/absence edges are reported; High
F1 scores indicate alignment with the ground truth. We report the
effect between 𝑇 and 𝑂 described by each C-DAG. An effect close
to 0 indicates that all mediator attributes are identifiable.
Results Summary: As illustrated in Table 3, CATER achieved for
both datasets the highest F1 scores and the lowest direct effect
values. Further, in both scenarios, CATER identified the same sets
of mediator variables as those identified in the ground truth. This
promising result illustrates that even a naive hybrid approach can
improve upon existing causal discovery solutions.

Performance of GPT-3-Only closely trails CATER’s performance,
especially in Covid-19. Along with the ground truth and CATER,
GPT-3-Only captured many causal relations which data-centric
methodswere not able to, such as climate→ spread of Covid-19.
However, it outputs graphs with notably more edges than the
ground truth. Consequently, these graphs are far from being DAGs
(inCovid-19, there is 2-cycle between economy and population size).
It is also unable to distinguish between direct and indirect effect. For
instance, GPT-3 and ground truth agree that population size →
spread of Covid-19 → Covid-19 death rate, but GPT-3 also
includes the edge population size → Covid-19 death rate).

Of the remaining baselines, GES yielded the highest F1 scores,
since it is tolerant to relaxation of the sufficiency assumption. Data-
centric baselines were able to capture causal relationships that
CATERmissed. For example, in Flights, these baselines recognized
that origin airport does not directly cause departure delay.
However, these methods fell behind in discerning mediator vari-
ables. All failed to identify anymediator inCovid-19Ėven with high
F1 scores on Flights, all failed to find any mediator. This implies
that not all causal relations can be discerned from data alone.

5 LIMITATIONS
Our proposed CDI system has the following limitations: First, the
quality of the generated C-DAG may be affected by factors such
as incorrect values in the extracted data and the performance of
black-box components like the entity linker used for connecting
values to entities in a KG. Second, the generated C-DAG may not
capture all real-life confounding attributes, violating the uncon-
foundedness assumption. Common confounding variables like age
or ethnicity may be absent in datasets containing information about
people. Lastly, while methods for identifying confounding variables
through causal DAGs are well understood, they typically rely on
having access to complete causal DAGs. However, in practice, ob-
taining full causal DAGs can be challenging. This is particularly
true in our dynamic framework, where automatically discovering
a full causal DAG may not always be feasible due to the need for
substantial domain knowledge in determining causal relationships.
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